Elliptic regularity and essential self-adjointness of Dirichlet operators on n

Vladimir I. Bogachev; Nicolai V. Krylov; Michael Röckner

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 451-461
  • ISSN: 0391-173X

How to cite

top

Bogachev, Vladimir I., Krylov, Nicolai V., and Röckner, Michael. "Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb {R}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 451-461. <http://eudml.org/doc/84265>.

@article{Bogachev1997,
author = {Bogachev, Vladimir I., Krylov, Nicolai V., Röckner, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalized Sobolev space; Radon measure},
language = {eng},
number = {3},
pages = {451-461},
publisher = {Scuola normale superiore},
title = {Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/84265},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Bogachev, Vladimir I.
AU - Krylov, Nicolai V.
AU - Röckner, Michael
TI - Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb {R}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 451
EP - 461
LA - eng
KW - generalized Sobolev space; Radon measure
UR - http://eudml.org/doc/84265
ER -

References

top
  1. [1] S. Albeverio - R. Hoegh-Krohn - L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys. 18 (1977), 907-917. Zbl0368.60091MR446236
  2. [2] V.I. Bogachev - N.V. Krylov - M. Röckner, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138 (1996), 223-242. Zbl0929.60039MR1391637
  3. [3] V.I. Bogachev - M. Röckner, Hypoellipticity and invariant measures of infinite dimensional diffusions, C. R. Acad. Sci. Paris Sér.1-Math.318 (1994), 553-558. Zbl0797.60062MR1270080
  4. [4] V.I. Bogachev - M. Röckner, Regularity of invariant measures on finite and infinite dimensional spaces and applications, J. Funct. Anal.133 (1995), 168-223. Zbl0840.60069MR1351647
  5. [5] R. Carmona, Regularity properties of Schrödinger and Dirichlet operators, J. Funct. Anal.33 (1979), 259-296. Zbl0419.60075MR549115
  6. [6] P. Cattiaux - C. Léonard, Minimization of the Kullback information of diffusion processes, Ann. Inst. H. Poincaré30 (1994), 83-132. Zbl0790.60032MR1262893
  7. [7] A. Eberle, Doctor-degree Thesis, Bielefeld University (1996). 
  8. [8] J. Frehse, Essential self-adjointness of singular elliptic operators, Bol. Soc. Brasil. Mat. 8 (1977),87-107. Zbl0448.47029MR603282
  9. [9] M. Fukushima, On a stochastic calculus related to Dirichlet forms and distorted Brownian motion, Phys. Rep. 77 (1981), 255-262. MR639031
  10. [10] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977. Zbl0361.35003MR473443
  11. [11] J.G. Hooton, Dirichlet forms associated with hypercontractive semigroups, Trans. Amer. Math. Soc. 253 (1979), 237-256. Zbl0424.47028MR536945
  12. [12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg- New York, 1976. Zbl0342.47009MR407617
  13. [13] O.A. Ladyz'enskaya - N.M. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  14. [14] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a priori estimates and the uniqueness problem, J. Funct. Anal.109 (1992), 199-213. Zbl0788.47041MR1183610
  15. [15] V. Maz'ja, Sobolev spaces, Springer, Berlin, 1985. 
  16. [16] M. Röckner - T.S. Zhang, Uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal.105 (1992), 187-231. Zbl0779.35028MR1156676
  17. [17] M. Röckner - T.S. Zhang, Uniqueness of generalized Schrödinger operators, II, J. Funct. Anal.119 (1994), 455-467. Zbl0799.35053MR1261099
  18. [18] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, 1966. Zbl0151.15501MR251373
  19. [19] W. Stannat, First order perturbations of Dirichlet operators: hexistence and uniqueness, J. Funct. Anal.141 (1996), 216-248. Zbl0911.47037MR1414378
  20. [20] E. Stein, Singular integrals and the differentiability properties of functions, Princeton University Press, Princeton, N. J., 1970. Zbl0207.13501MR290095
  21. [21] M. Taylor, Pseudodifferential operators, Princeton University Press, Princeton N. J., 1981. Zbl0453.47026MR618463
  22. [22] H. Triebel, Theory of functions, Birkhäuser, Basel-Boston, 1983. 
  23. [23] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel-Boston-Berlin1992. Zbl0763.46025MR1163193
  24. [24] N.S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973), 265-308. Zbl0279.35025MR369884
  25. [25] N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal.61 (1985), 98-115. Zbl0564.47010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.