Elliptic regularity and essential self-adjointness of Dirichlet operators on
Vladimir I. Bogachev; Nicolai V. Krylov; Michael Röckner
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 3, page 451-461
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBogachev, Vladimir I., Krylov, Nicolai V., and Röckner, Michael. "Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb {R}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 451-461. <http://eudml.org/doc/84265>.
@article{Bogachev1997,
author = {Bogachev, Vladimir I., Krylov, Nicolai V., Röckner, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalized Sobolev space; Radon measure},
language = {eng},
number = {3},
pages = {451-461},
publisher = {Scuola normale superiore},
title = {Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/84265},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Bogachev, Vladimir I.
AU - Krylov, Nicolai V.
AU - Röckner, Michael
TI - Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb {R}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 451
EP - 461
LA - eng
KW - generalized Sobolev space; Radon measure
UR - http://eudml.org/doc/84265
ER -
References
top- [1] S. Albeverio - R. Hoegh-Krohn - L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys. 18 (1977), 907-917. Zbl0368.60091MR446236
- [2] V.I. Bogachev - N.V. Krylov - M. Röckner, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138 (1996), 223-242. Zbl0929.60039MR1391637
- [3] V.I. Bogachev - M. Röckner, Hypoellipticity and invariant measures of infinite dimensional diffusions, C. R. Acad. Sci. Paris Sér.1-Math.318 (1994), 553-558. Zbl0797.60062MR1270080
- [4] V.I. Bogachev - M. Röckner, Regularity of invariant measures on finite and infinite dimensional spaces and applications, J. Funct. Anal.133 (1995), 168-223. Zbl0840.60069MR1351647
- [5] R. Carmona, Regularity properties of Schrödinger and Dirichlet operators, J. Funct. Anal.33 (1979), 259-296. Zbl0419.60075MR549115
- [6] P. Cattiaux - C. Léonard, Minimization of the Kullback information of diffusion processes, Ann. Inst. H. Poincaré30 (1994), 83-132. Zbl0790.60032MR1262893
- [7] A. Eberle, Doctor-degree Thesis, Bielefeld University (1996).
- [8] J. Frehse, Essential self-adjointness of singular elliptic operators, Bol. Soc. Brasil. Mat. 8 (1977),87-107. Zbl0448.47029MR603282
- [9] M. Fukushima, On a stochastic calculus related to Dirichlet forms and distorted Brownian motion, Phys. Rep. 77 (1981), 255-262. MR639031
- [10] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977. Zbl0361.35003MR473443
- [11] J.G. Hooton, Dirichlet forms associated with hypercontractive semigroups, Trans. Amer. Math. Soc. 253 (1979), 237-256. Zbl0424.47028MR536945
- [12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg- New York, 1976. Zbl0342.47009MR407617
- [13] O.A. Ladyz'enskaya - N.M. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [14] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a priori estimates and the uniqueness problem, J. Funct. Anal.109 (1992), 199-213. Zbl0788.47041MR1183610
- [15] V. Maz'ja, Sobolev spaces, Springer, Berlin, 1985.
- [16] M. Röckner - T.S. Zhang, Uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal.105 (1992), 187-231. Zbl0779.35028MR1156676
- [17] M. Röckner - T.S. Zhang, Uniqueness of generalized Schrödinger operators, II, J. Funct. Anal.119 (1994), 455-467. Zbl0799.35053MR1261099
- [18] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, 1966. Zbl0151.15501MR251373
- [19] W. Stannat, First order perturbations of Dirichlet operators: hexistence and uniqueness, J. Funct. Anal.141 (1996), 216-248. Zbl0911.47037MR1414378
- [20] E. Stein, Singular integrals and the differentiability properties of functions, Princeton University Press, Princeton, N. J., 1970. Zbl0207.13501MR290095
- [21] M. Taylor, Pseudodifferential operators, Princeton University Press, Princeton N. J., 1981. Zbl0453.47026MR618463
- [22] H. Triebel, Theory of functions, Birkhäuser, Basel-Boston, 1983.
- [23] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel-Boston-Berlin1992. Zbl0763.46025MR1163193
- [24] N.S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973), 265-308. Zbl0279.35025MR369884
- [25] N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal.61 (1985), 98-115. Zbl0564.47010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.