Spectral asymptotics for multi-quasi-elliptic operators in n

P. Boggiatto; E. Buzano

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 511-536
  • ISSN: 0391-173X

How to cite

top

Boggiatto, P., and Buzano, E.. "Spectral asymptotics for multi-quasi-elliptic operators in $\mathbb {R}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 511-536. <http://eudml.org/doc/84268>.

@article{Boggiatto1997,
author = {Boggiatto, P., Buzano, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {eigenvalues counting function; asymptotic expansion; Weyl term},
language = {eng},
number = {3},
pages = {511-536},
publisher = {Scuola normale superiore},
title = {Spectral asymptotics for multi-quasi-elliptic operators in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/84268},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Boggiatto, P.
AU - Buzano, E.
TI - Spectral asymptotics for multi-quasi-elliptic operators in $\mathbb {R}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 511
EP - 536
LA - eng
KW - eigenvalues counting function; asymptotic expansion; Weyl term
UR - http://eudml.org/doc/84268
ER -

References

top
  1. [1] P. Boggiatto - E. Buzano - L. Rodino, Multi-quasi-elliptic operators in R n, In: Demuth M. - Schulze B.-W. (eds) "Operator Theory: Advances and Applications" Birkhäuser Verlag, Base, Switzerland 1995. Zbl0884.35186MR1365315
  2. [2] P. Boggiatto, Spazi di Sobolev associati ad un poliedro ed operatori pseudodifferenziali multi-quasi-ellittici in Rn, Boll. Un. Mat. Ital.B7 (1993), 511-548. Zbl0807.35168MR1244406
  3. [3] P. Boggiatto, Sobolev spaces associated to a polyhedron and Fourier integral operators in Rn, Ann. Mat. Pura Appl. (IV), 171 (1996), 15-40. Zbl0881.35134MR1441863
  4. [4] L. Cattabriga, Su una classe di polinomi ipoelittici, Rend. Sem. Mat. Univ. Padova36 (1966), 60-74. Zbl0144.06601MR206500
  5. [5] L. Cattabriga, Alcuni teoremi di immersione per spazifunzionali generalizzanti gli spazi di S. L. Sobolev, Ann. Univ. Ferrara12 (1967), 63-88. Zbl0165.47203MR229021
  6. [6] L. Cattabriga, Moltiplicatori di Fourier e teoremi di immersione per certi spazifunzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970), 111-158. Zbl0193.41301MR355573
  7. [7] J. Friberg, Multi-quasi-elliptic polynomials, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1967), 239-260. Zbl0161.07803MR221090
  8. [8] J. Friberg, Asymptotic behavior ofintergrals connected with spectral functions for hypoelliptic operators, Ark. Mat.7 (1967), 283-298. Zbl0154.35503MR221091
  9. [9] B. Helffer - D. Robert, Propriétés asymptotiques du spectre d'opérateurs pseudo-différentiels sur Rn, Comm. Partial Differential Equations7 (1982), 795-882. Zbl0501.35081MR662451
  10. [10] B. Helffer - D. Robert, Comportement semi-classique du spectre des hamiltoniens quantiques hypoelliptiques, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9 (1982), 405-431. Zbl0507.35066MR681933
  11. [11] V.P. Miha, The Behavior at infinity of a class of polynomials, Proc. Steklov Inst. Math.91 (1967), 65-86. Zbl0186.42602MR220886
  12. [12] A. Mohamed, Comportement asymptotique, avec estimation du reste, des valeurs propres d'une classe d'opérateurs pseudo-différentiels sur Rn, Math. Nachr. 140 (1989), 127-186. [13] B. Pini, Osservazioni sulla ipoellitticità, Boll. Un. Mat. Ital.B18 (1963), 420-432. Zbl0689.35067MR1015393
  13. [14] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987. Zbl0616.47040MR883081
  14. [15] V.N. Tulovski - M.A. Shubin, On asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Math USSR-Sb. 21 (1973), 565-583. Zbl0295.35068
  15. [16] L.R. Volevi - S.G. Gindikin, On a class of hypoelliptic polynomials, Math USSR-Sb. 75 (1968), 369-383. Zbl0175.39401MR225007
  16. [17] L. Zanghirati, Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Analisi Funz. Appl. Supp. Boll. Un. Mat. Ital. 1 (1980), 177-195. Zbl0447.35023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.