Weyl formula for quasi-elliptic pseudo-differential operators
F. Nicola (2001)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
F. Nicola (2001)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Genadij O. Hakobyan, V. N. Margaryan (2003)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The problems of Gevrey hypoellipticity for a class of degenerated quasi-elliptic operators are studied by several authors (see [1]–[5]). In this paper we obtain the Gevrey hypoellipticity for a degenerated quasi-elliptic operator in , without any restriction on the characteristic polyhedron.
Annalisa Menegus, Giuseppe Olivi (1976)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Wojciech Czaja, Ziemowit Rzeszotnik (1999)
Colloquium Mathematicae
Similarity:
In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.
T. Burak (1970)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Thierry Paul, Alejandro Uribe (1998)
Revista Matemática Iberoamericana
Similarity:
Let Ψj h and Ej h denote the eigenfunctions and eigenvalues of a Schrödinger-type operator Hh with discrete spectrum. Let Ψ(x,ξ) be a coherent state centered at a point (x,ξ) belonging to an elliptic periodic orbit, γ of action Sγ and Maslov index σγ. We consider weighted Weyl estimates of the following...
Jens Frehse (1979)
Manuscripta mathematica
Similarity: