On -solutions of the Laplace equation and zeros of holomorphic functions

Joaquim Bruna; Joaquim Ortega-Cerdà

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 571-591
  • ISSN: 0391-173X

How to cite

top

Bruna, Joaquim, and Ortega-Cerdà, Joaquim. "On $L^p$-solutions of the Laplace equation and zeros of holomorphic functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 571-591. <http://eudml.org/doc/84271>.

@article{Bruna1997,
author = {Bruna, Joaquim, Ortega-Cerdà, Joaquim},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Newton potential; maximal fractional function; Carleson measure; Bergman space; bilaplacian},
language = {eng},
number = {3},
pages = {571-591},
publisher = {Scuola normale superiore},
title = {On $L^p$-solutions of the Laplace equation and zeros of holomorphic functions},
url = {http://eudml.org/doc/84271},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Bruna, Joaquim
AU - Ortega-Cerdà, Joaquim
TI - On $L^p$-solutions of the Laplace equation and zeros of holomorphic functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 571
EP - 591
LA - eng
KW - Newton potential; maximal fractional function; Carleson measure; Bergman space; bilaplacian
UR - http://eudml.org/doc/84271
ER -

References

top
  1. [And] M. Andersson, Solution formulas for the ∂ ∂-equation and weighted Nevanlinna classes in the polydisc, Bull. Soc. Math. France109 (1985), 135-154. Zbl0598.32007
  2. [Bel1] E. Beller, Zeros of AP functions and related classes of analytic functions, Israel J. Math.22 (1975) 68-80. Zbl0322.30028MR385103
  3. [Bel2] E. Beller, Factorization for non-Nevanlinna classes of analytic functions, Israel J. Math.27 (1977), 320-330. Zbl0361.30012MR442234
  4. [Bel1] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. Zbl0482.31004MR646379
  5. [Ber] B. Berndtsson, ∂b and Carleson type inequalities, Lecture Notes in Math.1277, Springer-Verlag, pp. 42-55. 
  6. [BH] E. Beller - C. Horowitz, Zero sets and random zero sets in certain function spaces, J. Analyse Math.64 (1994), 203-217. Zbl0819.30003MR1303512
  7. [Bom] G. Bomash, A Blaschke-type product and random zero sets for Bergman spaces, Ark. Mat.30 (1992), 45-60. Zbl0764.30029MR1171094
  8. [CMS] R.R. Coiffman - Y. Meyer - E.M. Stein, Some new function spaces and their application to harmonic analysis, J. Funct. Anal.62 (1985), 304-335. Zbl0569.42016MR791851
  9. [Coc] C. Cochran, Random Blaschke products, Trans. Amer. Math. Soc.322 (1990), 731-755. Zbl0709.30031MR1022163
  10. [DH] S.A. Dautov - G.M. Henkin, Zeros of holomorphic functions of finite order and weighted estimates for solutions of ∂ -problem, Math. Sbornik107 (1978), 163-174. Zbl0392.32001
  11. [Fed] H. Federer, Geometric measure theory, Springer-Verlag, New York, N.Y., 1969. Zbl0176.00801MR257325
  12. [Gar] J.B. Garnett, Bounded analytic functions, Academic Press, New York, N.Y, 1981. Zbl0469.30024MR628971
  13. [Gara] P.R. Garabedian, Partial differential equations, second edition, Chelsea Publishing Company, New York, N.Y., 1986. MR943117
  14. [Hei] A. Heilper, The zeros offunctions in Nevanlinna's area class, Israel J. Math. 34 (1979), 1-11. Zbl0498.30040MR571391
  15. [HK] W.K. Hayman - P.B. Kennedy, Subharmonic functions, Academic Press, London, 1976. Zbl0419.31001
  16. [Hor] C. Horowitz, Some conditions on Bergman spaces zero sets, J. Analyse Math.62 (1994), 323-348. Zbl0795.30006MR1269212
  17. [Leb] E. Leblanc, A probabilistic zero condition for the Bergman space, Michigan Math. J. 37 (1990), 427-436. Zbl0717.30008MR1077326
  18. [Lig] E. Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball of Rn, Studia Math. 87 (1987), 23-32. Zbl0658.31006MR924758
  19. [Lue1] D. Luecking, Multipliers of Bergman spaces into Lebesgue spaces, Proc. Edinburgh Math. Soc. (2) 29 (1986), 125-131. Zbl0587.30048MR829188
  20. [Lue2] D. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal.73 (1987), 345-368. Zbl0618.47018MR899655
  21. [Lue3] D. Luecking, Zero sequences for Bergman spaces, to appear in Complex Variables. Zbl0871.30004MR1413164
  22. [Mas] X. Massaneda, Random sequences with prescribed radii in the unit ball, Complex Variables31 (1996), 193-211. Zbl0865.41007MR1423251
  23. [MW] B. Muckenhoupt - R.L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. Zbl0289.26010MR340523
  24. [Ort] J. Ortega-Cerdà, Zero sets of holomorphic functions in the bidisc, to appear in Ark. Mat. Zbl0911.32003MR1611181
  25. [Pas] D. Pascuas, Zeros i interpolació en espais de funcions holomorfes del disc unitat, PhD. Thesis, Universitat Autònoma de Barcelona (March, 1988). 
  26. [Rudin] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York, 1980. Zbl0495.32001MR601594
  27. [Rud] R. Rudowicz, Random interpolating sequences with probability one, Bull. London Math. Soc. 26 (1994), 160-164. Zbl0831.30020MR1272302
  28. [Sha] H. Shapiro, Quasi-balayage and apriori inequalities, in preparation. 
  29. [Ste] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970. Zbl0207.13501MR290095
  30. [Swe] G. Sweers, Positivity for a strongly coupled elliptic system, J. Geom. Anal.4 (1994), 121-142. Zbl0792.35048MR1274141
  31. [Zhu] K. Zhu, Operator theory in the function spaces, Marcel-Dekker, New York, 1990. Zbl0706.47019MR1074007

NotesEmbed ?

top

You must be logged in to post comments.