The moduli space of special lagrangian submanifolds

Nigel J. Hitchin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 503-515
  • ISSN: 0391-173X

How to cite

top

Hitchin, Nigel J.. "The moduli space of special lagrangian submanifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 503-515. <http://eudml.org/doc/84303>.

@article{Hitchin1997,
author = {Hitchin, Nigel J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Calabi-Yau theory; moduli space; Lagrangian submanifolds},
language = {eng},
number = {3-4},
pages = {503-515},
publisher = {Scuola normale superiore},
title = {The moduli space of special lagrangian submanifolds},
url = {http://eudml.org/doc/84303},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Hitchin, Nigel J.
TI - The moduli space of special lagrangian submanifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 503
EP - 515
LA - eng
KW - Calabi-Yau theory; moduli space; Lagrangian submanifolds
UR - http://eudml.org/doc/84303
ER -

References

top
  1. [1] A. Beauville, Variétés Kählériennes dont la 1ére classe de Chern est nulle, J. Diff. Geometry18 (1983), 755-782. Zbl0537.53056MR730926
  2. [2] W. Blaschke, "Vorlesungen über Differentialgeometrie" II, J. Springer, Berlin, 1923. Zbl49.0499.01
  3. [3] E. Calabi, A construction of nonhomogeneous Einstein metrics, Proc. of Symp. in Pure Mathematics27, 17-24, AMS, Providence, 1975. Zbl0309.53043MR379912
  4. [4] E. Calabi, Complete affine hypersurfaces I, in Symposia MathematicaX, 19-38, Academic Press, London,1972. Zbl0252.53008MR365607
  5. [5] G. Darboux, Leçons sur la théorie générale des surfaces III, Gauthier-Villars, Paris, 1894. 
  6. [6] G.W. Gibbons - S.W. Hawking, Gravitational multi-instantons, Phys. Lett. B78 (1978), 430-432. 
  7. [7] R. Harvey - H.B. LawsonJr, Calibrated geometries, Acta Math.148 (1982), 47-157. Zbl0584.53021MR666108
  8. [8] R.C. Mclean, Deformations of Calibrated Submanifolds, Duke University preprint, January,1996. Zbl0929.53027MR1664890
  9. [9] V. Ruuska, Riemannian polarizations, Ann. Acad. Sci. Fenn. Math. Diss.106 (1996). Zbl0862.53028MR1413839
  10. [10] S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics 201, Longman, Harlow,1989. Zbl0685.53001MR1004008
  11. [11] M.B. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math.80 (1993), no. 2, 151-163. Zbl0811.53049MR1233478
  12. [12] A. Strominger - S.-T. Yau - E. Zaslow, Mirror Symmetry is T-duality, Nuclear Phys.B479 (1996), no. 1-2, 243-259. Zbl0896.14024MR1429831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.