On the curvature of moduli space of special Lagrangian submanifolds
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 2, page 349-362
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topNannicini, Antonella. "On the curvature of moduli space of special Lagrangian submanifolds." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 349-362. <http://eudml.org/doc/196241>.
@article{Nannicini2002,
abstract = {In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of $g$.},
author = {Nannicini, Antonella},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-362},
publisher = {Unione Matematica Italiana},
title = {On the curvature of moduli space of special Lagrangian submanifolds},
url = {http://eudml.org/doc/196241},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Nannicini, Antonella
TI - On the curvature of moduli space of special Lagrangian submanifolds
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 349
EP - 362
AB - In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of $g$.
LA - eng
UR - http://eudml.org/doc/196241
ER -
References
top- GROMOV, M., Pseudo holomorphic curves in symplectic manifolds, Inventiones Mathematicae, 82 (1985), 307-347. Zbl0592.53025MR809718
- HITCHIN, N. J., The moduli space of special Lagrangian submanifolds, Annali Scuola Normale Superiore di Pisa, (to appear) dg-ga/9711002. Zbl1015.32022MR1655530
- MCLEAN, R. C., Deformations of calibrated submanifolds, Duke University preprint, January (1996). Zbl0929.53027MR1664890
- RUUSKA, V., Riemannian polarizations, Ann. Acad. Sci. Fenn. Math. Diss. No. 106 (1996). Zbl0862.53028MR1413839
- SMOCZYK, K., A canonical way to deform a Lagrangian submanifold, dg-ga/9605005.
- STROMINGER, A.- YAU, S.-T.- ZASLOV, E., Mirror Symmetry is -duality, Nuclear Phys. B, 479, no. 1-2 (1996), 243-259. Zbl0896.14024MR1429831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.