On the curvature of moduli space of special Lagrangian submanifolds

Antonella Nannicini

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 2, page 349-362
  • ISSN: 0392-4041

Abstract

top
In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of g .

How to cite

top

Nannicini, Antonella. "On the curvature of moduli space of special Lagrangian submanifolds." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 349-362. <http://eudml.org/doc/196241>.

@article{Nannicini2002,
abstract = {In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of $g$.},
author = {Nannicini, Antonella},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {349-362},
publisher = {Unione Matematica Italiana},
title = {On the curvature of moduli space of special Lagrangian submanifolds},
url = {http://eudml.org/doc/196241},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Nannicini, Antonella
TI - On the curvature of moduli space of special Lagrangian submanifolds
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 349
EP - 362
AB - In this paper we study the curvature tensor of the Riemannian metric defined in a natural way on the moduli space of compact special Lagrangian submanifolds of a Calabi-Yau manifold. We state some curvature properties and we prove that the Ricci curvature is non negative under an assumption on the determinant of $g$.
LA - eng
UR - http://eudml.org/doc/196241
ER -

References

top
  1. GROMOV, M., Pseudo holomorphic curves in symplectic manifolds, Inventiones Mathematicae, 82 (1985), 307-347. Zbl0592.53025MR809718
  2. HITCHIN, N. J., The moduli space of special Lagrangian submanifolds, Annali Scuola Normale Superiore di Pisa, (to appear) dg-ga/9711002. Zbl1015.32022MR1655530
  3. MCLEAN, R. C., Deformations of calibrated submanifolds, Duke University preprint, January (1996). Zbl0929.53027MR1664890
  4. RUUSKA, V., Riemannian polarizations, Ann. Acad. Sci. Fenn. Math. Diss. No. 106 (1996). Zbl0862.53028MR1413839
  5. SMOCZYK, K., A canonical way to deform a Lagrangian submanifold, dg-ga/9605005. 
  6. STROMINGER, A.- YAU, S.-T.- ZASLOV, E., Mirror Symmetry is T -duality, Nuclear Phys. B, 479, no. 1-2 (1996), 243-259. Zbl0896.14024MR1429831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.