Rotating drops trapped between parallel planes

Maria Athanassenas

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 4, page 749-762
  • ISSN: 0391-173X

How to cite

top

Athanassenas, Maria. "Rotating drops trapped between parallel planes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1998): 749-762. <http://eudml.org/doc/84347>.

@article{Athanassenas1998,
author = {Athanassenas, Maria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {local minimizer; geometric measure theory; associated energy functional; a priori estimates; compactness argument},
language = {eng},
number = {4},
pages = {749-762},
publisher = {Scuola normale superiore},
title = {Rotating drops trapped between parallel planes},
url = {http://eudml.org/doc/84347},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Athanassenas, Maria
TI - Rotating drops trapped between parallel planes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 749
EP - 762
LA - eng
KW - local minimizer; geometric measure theory; associated energy functional; a priori estimates; compactness argument
UR - http://eudml.org/doc/84347
ER -

References

top
  1. [1] S. Albano - E.H.A. Gonzales, Rotating drops, Indiana Univ. Math. J. 32, no. 5 (1983), 687-702. Zbl0568.76099MR711861
  2. [2] P.E. Appell, "Traité de mécanique rationelle", Vol. 4, Chapter 9. Gauthier-Villars, Paris, 1932. 
  3. [3] M. Athanassenas, A free boundary problem for capillary surfaces, Preprint Nr. 164, SFB 256, Univ. Bonn (To appear in Manuscripta Math.) Zbl0768.49025MR1171152
  4. [4] J.E.G. Auchmuty, Existence of axisymmetric equilibrium figures, Arch. Rational Mech. Anal.65 (1977), 249-261. Zbl0366.76083MR446076
  5. [5] R.A. Brown - L.E. Scriven, The shapes and stability of captive rotating drops, Philos. Trans. Roy. Soc. London Ser.A297 (1980), p. 51. Zbl0438.76040MR581633
  6. [6] L.A. Caffarelli - A. Friedman, The shape of axisymmetric rotating fluid, J. Funct. Anal.35 (1980), 109-142. Zbl0439.35068MR560219
  7. [7] S. Chandrasekhar, The stability of a rotating liquid drop, Proc. Roy. Soc. London, Ser. A286 (1965), 1-26. Zbl0137.23004MR183226
  8. [8] S. Chandrasekhar, Ellipsoidal figures of equilibrium, New Haven: Yale University Press1969. Zbl0213.52304
  9. [9] G. Congedo, Rotating drops in a vessel. Existence of local minima, Rend. Sem. Mat. Univ. Padova72 (1984), 135-156. Zbl0567.49023MR778338
  10. [10] G. Congedo - M. Emmer - E.H.A. Gonzalez, Rotating drops in a vessel, Rend. Sem. Mat. Univ. Padova70 (1983), 167-186. Zbl0545.76110MR742117
  11. [11] G.C. Darwin, On Jacobi's figure of equilibrium for a rotating mass of fluid, Proc. Roy. Soc. London41 (1886), 319-342. Zbl18.0844.03JFM18.0844.03
  12. [12] CH. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl. (9) 6 (1841), 309-320. 
  13. [13] E. De Giorgi, Sulla proprietá isoperimetrica dell' ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Serie VIII, Vol. V (1958). Zbl0116.07901
  14. [14] E. De Giorgi - F. Colombini - L. Piccinini, "Frontiere orientate di misura minima e questioni collegate", Editrice Tecnico Scientifica, Pisa, 1972. Zbl0296.49031
  15. [15] E. Giusti, "Minimal surfaces and functions of bounded variation, Birkhäuser Verlag. Zbl0545.49018MR775682
  16. [16] A. Friedman - B. Turkington, Asymptotic estimates for an axisymmetric rotating fluid, J. Funct. Anal.37 (1980), 136-163. Zbl0435.35014MR578929
  17. [17] A. Friedman - B. Turkington, The oblateness of an axisymmetric rotating fluid, Indiana Univ. Math. J.29 (1980), 777-792. Zbl0484.76116MR589442
  18. [18] W.V. Yu. W.C. Hsiang, A generalization of a theorem of Delaunay, J. Diff. Geometry16 (1981), 161-177. Zbl0504.53044MR638783
  19. [19] E. Holder, Gleichgewichtsfiguren rotierender Fl ussigkeiten mit Oberfl achenspannung, Math. Z.25 (1926), 188-208. Zbl52.1020.04MR1544806JFM52.1020.04
  20. [20] C.G.J. Jacobi, Über die Figur des Gleichgewichts, Ann. Physik33 (1834), 229-238. 
  21. [21] L. Lichtenstein, "Gleichgewichtsfiguren der rotierenden Flüssigkeiten ", Berlin: Springer-Verlag, 1933. Zbl0007.18104JFM59.1441.12
  22. [22] R.A. Lyttleton, "The stability of rotating liquid masses", Cambridge University Press1953. Zbl0051.18501MR58323
  23. [23] C. Mac Laurin, "A treatise on fluxions", Edinburgh: T.W. & T. Ruddimas, 1742. 
  24. [24] U. Massari - M. Miranda, "Minimal surfaces of codimension one", North Holland, Mathematics Studies 91, 1984. Zbl0565.49030MR795963
  25. [25] J.A.F. Plateau, Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity, Washington, D.C.: Annual Report of the Board of Regents of the Smithsonian Institution (1863), 270-285. 
  26. [26] H. Poincaré, Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, Acta Math.7 (1885), 259-302. JFM17.0864.02
  27. [27] Lord Rayleigh, The equilibrium of revolving liquid under capillary force, Phil. Mag.28 (1914), 161-170. Zbl45.1053.01JFM45.1053.01
  28. [28] T. Sturzenhecker, Existence of local minima for capillarity problems, J. Geom. Anal.6 (1996), 135-150. Zbl0857.49029MR1402390

NotesEmbed ?

top

You must be logged in to post comments.