Rotating drops trapped between parallel planes

Maria Athanassenas

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 4, page 749-762
  • ISSN: 0391-173X

How to cite

top

Athanassenas, Maria. "Rotating drops trapped between parallel planes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1998): 749-762. <http://eudml.org/doc/84347>.

@article{Athanassenas1998,
author = {Athanassenas, Maria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {local minimizer; geometric measure theory; associated energy functional; a priori estimates; compactness argument},
language = {eng},
number = {4},
pages = {749-762},
publisher = {Scuola normale superiore},
title = {Rotating drops trapped between parallel planes},
url = {http://eudml.org/doc/84347},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Athanassenas, Maria
TI - Rotating drops trapped between parallel planes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 749
EP - 762
LA - eng
KW - local minimizer; geometric measure theory; associated energy functional; a priori estimates; compactness argument
UR - http://eudml.org/doc/84347
ER -

References

top
  1. [1] S. Albano - E.H.A. Gonzales, Rotating drops, Indiana Univ. Math. J. 32, no. 5 (1983), 687-702. Zbl0568.76099MR711861
  2. [2] P.E. Appell, "Traité de mécanique rationelle", Vol. 4, Chapter 9. Gauthier-Villars, Paris, 1932. 
  3. [3] M. Athanassenas, A free boundary problem for capillary surfaces, Preprint Nr. 164, SFB 256, Univ. Bonn (To appear in Manuscripta Math.) Zbl0768.49025MR1171152
  4. [4] J.E.G. Auchmuty, Existence of axisymmetric equilibrium figures, Arch. Rational Mech. Anal.65 (1977), 249-261. Zbl0366.76083MR446076
  5. [5] R.A. Brown - L.E. Scriven, The shapes and stability of captive rotating drops, Philos. Trans. Roy. Soc. London Ser.A297 (1980), p. 51. Zbl0438.76040MR581633
  6. [6] L.A. Caffarelli - A. Friedman, The shape of axisymmetric rotating fluid, J. Funct. Anal.35 (1980), 109-142. Zbl0439.35068MR560219
  7. [7] S. Chandrasekhar, The stability of a rotating liquid drop, Proc. Roy. Soc. London, Ser. A286 (1965), 1-26. Zbl0137.23004MR183226
  8. [8] S. Chandrasekhar, Ellipsoidal figures of equilibrium, New Haven: Yale University Press1969. Zbl0213.52304
  9. [9] G. Congedo, Rotating drops in a vessel. Existence of local minima, Rend. Sem. Mat. Univ. Padova72 (1984), 135-156. Zbl0567.49023MR778338
  10. [10] G. Congedo - M. Emmer - E.H.A. Gonzalez, Rotating drops in a vessel, Rend. Sem. Mat. Univ. Padova70 (1983), 167-186. Zbl0545.76110MR742117
  11. [11] G.C. Darwin, On Jacobi's figure of equilibrium for a rotating mass of fluid, Proc. Roy. Soc. London41 (1886), 319-342. Zbl18.0844.03JFM18.0844.03
  12. [12] CH. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl. (9) 6 (1841), 309-320. 
  13. [13] E. De Giorgi, Sulla proprietá isoperimetrica dell' ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Serie VIII, Vol. V (1958). Zbl0116.07901
  14. [14] E. De Giorgi - F. Colombini - L. Piccinini, "Frontiere orientate di misura minima e questioni collegate", Editrice Tecnico Scientifica, Pisa, 1972. Zbl0296.49031
  15. [15] E. Giusti, "Minimal surfaces and functions of bounded variation, Birkhäuser Verlag. Zbl0545.49018MR775682
  16. [16] A. Friedman - B. Turkington, Asymptotic estimates for an axisymmetric rotating fluid, J. Funct. Anal.37 (1980), 136-163. Zbl0435.35014MR578929
  17. [17] A. Friedman - B. Turkington, The oblateness of an axisymmetric rotating fluid, Indiana Univ. Math. J.29 (1980), 777-792. Zbl0484.76116MR589442
  18. [18] W.V. Yu. W.C. Hsiang, A generalization of a theorem of Delaunay, J. Diff. Geometry16 (1981), 161-177. Zbl0504.53044MR638783
  19. [19] E. Holder, Gleichgewichtsfiguren rotierender Fl ussigkeiten mit Oberfl achenspannung, Math. Z.25 (1926), 188-208. Zbl52.1020.04MR1544806JFM52.1020.04
  20. [20] C.G.J. Jacobi, Über die Figur des Gleichgewichts, Ann. Physik33 (1834), 229-238. 
  21. [21] L. Lichtenstein, "Gleichgewichtsfiguren der rotierenden Flüssigkeiten ", Berlin: Springer-Verlag, 1933. Zbl0007.18104JFM59.1441.12
  22. [22] R.A. Lyttleton, "The stability of rotating liquid masses", Cambridge University Press1953. Zbl0051.18501MR58323
  23. [23] C. Mac Laurin, "A treatise on fluxions", Edinburgh: T.W. & T. Ruddimas, 1742. 
  24. [24] U. Massari - M. Miranda, "Minimal surfaces of codimension one", North Holland, Mathematics Studies 91, 1984. Zbl0565.49030MR795963
  25. [25] J.A.F. Plateau, Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity, Washington, D.C.: Annual Report of the Board of Regents of the Smithsonian Institution (1863), 270-285. 
  26. [26] H. Poincaré, Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, Acta Math.7 (1885), 259-302. JFM17.0864.02
  27. [27] Lord Rayleigh, The equilibrium of revolving liquid under capillary force, Phil. Mag.28 (1914), 161-170. Zbl45.1053.01JFM45.1053.01
  28. [28] T. Sturzenhecker, Existence of local minima for capillarity problems, J. Geom. Anal.6 (1996), 135-150. Zbl0857.49029MR1402390

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.