On one-sided BMO and Lipschitz functions
Hugo Aimar; Raquel Crescimbeni
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 3-4, page 437-456
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAimar, Hugo, and Crescimbeni, Raquel. "On one-sided BMO and Lipschitz functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.3-4 (1998): 437-456. <http://eudml.org/doc/84364>.
@article{Aimar1998,
author = {Aimar, Hugo, Crescimbeni, Raquel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {one-sided BMO function; John-Nirenberg type inequality; one-sided maximal function; one-sided Muckenhoupt weight; one-sided Lipschitz function; Hausdorff dimension},
language = {eng},
number = {3-4},
pages = {437-456},
publisher = {Scuola normale superiore},
title = {On one-sided BMO and Lipschitz functions},
url = {http://eudml.org/doc/84364},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Aimar, Hugo
AU - Crescimbeni, Raquel
TI - On one-sided BMO and Lipschitz functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 3-4
SP - 437
EP - 456
LA - eng
KW - one-sided BMO function; John-Nirenberg type inequality; one-sided maximal function; one-sided Muckenhoupt weight; one-sided Lipschitz function; Hausdorff dimension
UR - http://eudml.org/doc/84364
ER -
References
top- [1] H. Aimar, Elliptic and parabolic BMO and Harnack's inequality, Trans. Amer. Math. Soc.306 (1988), 265-276. Zbl0675.42020MR927690
- [2] H. Aimar - L. Forzani, On continuity properties of functions with conditions on the mean oscillation, Studia Math.106 (1993), 139-151. Zbl0821.42014MR1240310
- [3] S. Campanato, Proprietà di Hölderianità di alcune classi difunzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1963), 175-188. Zbl0121.29201MR156188
- [4] E. Fabes - N. Garofalo, Parabolic B M O and Harnack's inequality, Proc. Amer. Math. Soc.95 (1985), 63-69. Zbl0583.35051MR796447
- [5] K.J. Falconer, "The Geometry of Fractal Sets", Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1985. Zbl0587.28004MR867284
- [6] J. Garcia Cuerva - J.L. Rubio De Francia, "Weighted Norm inequalities and related topics ", Mathematics Studies116, North Holland, 1985. Zbl0578.46046MR807149
- [7] J. Garnet - P. Jones, BMO from dyadic BMO, Pac. J. Math.99 (1982), 351-371. Zbl0516.46021MR658065
- [8] F.J. Martin-Reyes - A. De La Torre, One-sided BMO spaces, J. London Math. Soc.49 (1994), 529-542. Zbl0801.42010MR1271548
- [9] F. Martin-Reyes - P. Ortega-Salvador - A. De La Torre, Weighted inequalities for one-sided maximal function, Trans. Amer. Math. Soc.319 (1990), 517-534. Zbl0696.42013MR986694
- [10] F.J. Martin-Reyes, On the one-sided Hardy-Littlewood maximal functions in the real line and in dimensions greater than one, In: " Fourier Analysis and Partial Differential Equations", García Cuerva, Hernández, Soria and Torrea editors, CRC Press, 1995, pp. 237-250. Zbl0895.42007MR1330244
- [11] G.N. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc.15 (1964), 717-724. Zbl0129.04002MR168712
- [12] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.18 (1964), 101-134; 20 (1967), 231-236. Zbl0149.06902MR159139
- [13] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal function, Trans. Amer. Math. Soc.297 (1986), 53-61. Zbl0627.42009MR849466
- [14] S. Spanne, Somefunction spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa, Cl. Sci.19 (1965), 593-608. Zbl0199.44303MR190729
- [15] A. Torchinsky, "Real variable methods in harmonic analysis", Academic Press, 1986. Zbl0621.42001MR869816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.