Envelopes of holomorphy in
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 3, page 569-590
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLupacciolu, Guido. "Envelopes of holomorphy in $\mathbb {C}^2$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.3 (1999): 569-590. <http://eudml.org/doc/84388>.
@article{Lupacciolu1999,
author = {Lupacciolu, Guido},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {envelopes of holomorphy; classes of subsets of },
language = {eng},
number = {3},
pages = {569-590},
publisher = {Scuola normale superiore},
title = {Envelopes of holomorphy in $\mathbb \{C\}^2$},
url = {http://eudml.org/doc/84388},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Lupacciolu, Guido
TI - Envelopes of holomorphy in $\mathbb {C}^2$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 3
SP - 569
EP - 590
LA - eng
KW - envelopes of holomorphy; classes of subsets of
UR - http://eudml.org/doc/84388
ER -
References
top- [1] H. Alexander, A note on polynomial hull, Proc. Amer. Math. Soc.33 (1972), 389-391. Zbl0239.32013MR294689
- [2] H. Alexander - E.L. Stout, A note on hull, Bull. London Math. Soc. (3) 22 (1990), 258-260. Zbl0668.32015MR1041140
- [3] R.F. Basener, Complementary components ofpolynominal hulls, Proc. Amer. Math. Soc.69 (1978), 230-232. Zbl0422.32014MR466626
- [4] E. Bedford - W. Klingenberg, On the envelope of holomorphy of a 2-sphere in C2, J. Amer. Math. Soc.4 (1991), 623-646. Zbl0736.32009MR1094437
- [5] J.E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat.9 (1971), 39-54. Zbl0221.46055MR385170
- [6] G.E. Bredon, "Sheaf Theory", McGraw-Hill, New York, 1967. Zbl0158.20505MR221500
- [7] E.M. Chirka - E.L. Stout, Removable Singularities in the Boundary, In: "Contributions to Complex Analysis and Analytic Geometry. Dedicated to Pierre Dolbeault". H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994, pp. 43-104. Zbl0820.32008MR1319345
- [8] A. Dold, "Lectures on Algebraic Topology", Springer-Verlag, Berlin-Heidelberg- New York, 1972. Zbl0234.55001MR415602
- [9] F Forstnerič - E.L. Stout, A new class of polynomially convex sets, Ark. Mat.29 (1991), 51-62. Zbl0734.32006MR1115074
- [10] R.E. Greene - H. Wu, Whitney's imbedding theorem by solutions of elliptic equations and geometric consequence, Proc. Sympos. Pure Math., Vol. 27, Part 2, Providence, R.I.: Amer. Math. Soc. 1975, pp. 287-296. Zbl0322.31007MR407908
- [11] R.C. Gunning - H. Rossi, "Analytic Functions of Several Complex Variables", Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Zbl0141.08601MR180696
- [12] F.R. Harvey - R.O. WellsJr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc.136 (1969), 509-516. Zbl0175.37204MR235158
- [13] L. Hörmander, "An introduction to complex analysis in several variables" (second edition), North-Holland, Amsterdam, 1973. Zbl0271.32001MR1045639
- [14] B. Jöricke, Removable singularities of CR-functions, Ark. Mat.26 (1988), 117-143. Zbl0653.32013MR948284
- [15] G. Lupacciolu, Topological properties of q-convex set, Trans. Amer. Math. Soc.337 (1993), 427-435. Zbl0776.32013MR1091708
- [16] G. Lupacciolu, Complements of domains with respect to hulls of outside compact sets, Math. Z.214 (1993), 117-117. Zbl0798.32013MR1234601
- [17] G. Lupacciolu, On the envelopes of holomorphy of strictly Levi-convex hypersurfaces, In: "Colloque d'Analyse Complexe et Géométrie" (Marseille, janvier 1992), Astérisqe217, Soc. Math. France, 1993, pp. 183-192. Zbl0794.32013MR1247758
- [18] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat.32 (1994), 455-473. Zbl0823.32004MR1318542
- [19] G. Lupacciolu, Holomorphic extension to open hulls, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV), to appear. Zbl0889.32013MR1433427
- [20] E.E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and Hauptvermutung, Ann. of Math.56 (1952), 96-114. Zbl0048.17102MR48805
- [21 ] J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math.72 (1960), 521-554. Zbl0108.18101MR121804
- [22] J. Munkres, "Elementary Differential Topology" (third printing), Princeton N.J.: Ann. Math. Studies54, Princeton University Press, 1973. Zbl0107.17201MR198479
- [23] E.L. Stout, Removable singularities for the boundary values of holomorphic functions, In: "Several Complex Variable: Proceedings of the Mittag-Leffler Institute, 1987-1988", Princeton, N.J.: Math. Notes 38, Princeton University Press, 1993, pp. 600-629. Zbl0772.32011MR1207885
- [24] G. Tomassini, Sur les algèbres A0 (D) et A∞ (D) d' un domaine pseudoconvexe non borné, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 10 (1983), 243-256. Zbl0523.32010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.