Envelopes of holomorphy in 2

Guido Lupacciolu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 3, page 569-590
  • ISSN: 0391-173X

How to cite

top

Lupacciolu, Guido. "Envelopes of holomorphy in $\mathbb {C}^2$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.3 (1999): 569-590. <http://eudml.org/doc/84388>.

@article{Lupacciolu1999,
author = {Lupacciolu, Guido},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {envelopes of holomorphy; classes of subsets of },
language = {eng},
number = {3},
pages = {569-590},
publisher = {Scuola normale superiore},
title = {Envelopes of holomorphy in $\mathbb \{C\}^2$},
url = {http://eudml.org/doc/84388},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Lupacciolu, Guido
TI - Envelopes of holomorphy in $\mathbb {C}^2$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 3
SP - 569
EP - 590
LA - eng
KW - envelopes of holomorphy; classes of subsets of
UR - http://eudml.org/doc/84388
ER -

References

top
  1. [1] H. Alexander, A note on polynomial hull, Proc. Amer. Math. Soc.33 (1972), 389-391. Zbl0239.32013MR294689
  2. [2] H. Alexander - E.L. Stout, A note on hull, Bull. London Math. Soc. (3) 22 (1990), 258-260. Zbl0668.32015MR1041140
  3. [3] R.F. Basener, Complementary components ofpolynominal hulls, Proc. Amer. Math. Soc.69 (1978), 230-232. Zbl0422.32014MR466626
  4. [4] E. Bedford - W. Klingenberg, On the envelope of holomorphy of a 2-sphere in C2, J. Amer. Math. Soc.4 (1991), 623-646. Zbl0736.32009MR1094437
  5. [5] J.E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat.9 (1971), 39-54. Zbl0221.46055MR385170
  6. [6] G.E. Bredon, "Sheaf Theory", McGraw-Hill, New York, 1967. Zbl0158.20505MR221500
  7. [7] E.M. Chirka - E.L. Stout, Removable Singularities in the Boundary, In: "Contributions to Complex Analysis and Analytic Geometry. Dedicated to Pierre Dolbeault". H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994, pp. 43-104. Zbl0820.32008MR1319345
  8. [8] A. Dold, "Lectures on Algebraic Topology", Springer-Verlag, Berlin-Heidelberg- New York, 1972. Zbl0234.55001MR415602
  9. [9] F Forstnerič - E.L. Stout, A new class of polynomially convex sets, Ark. Mat.29 (1991), 51-62. Zbl0734.32006MR1115074
  10. [10] R.E. Greene - H. Wu, Whitney's imbedding theorem by solutions of elliptic equations and geometric consequence, Proc. Sympos. Pure Math., Vol. 27, Part 2, Providence, R.I.: Amer. Math. Soc. 1975, pp. 287-296. Zbl0322.31007MR407908
  11. [11] R.C. Gunning - H. Rossi, "Analytic Functions of Several Complex Variables", Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Zbl0141.08601MR180696
  12. [12] F.R. Harvey - R.O. WellsJr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc.136 (1969), 509-516. Zbl0175.37204MR235158
  13. [13] L. Hörmander, "An introduction to complex analysis in several variables" (second edition), North-Holland, Amsterdam, 1973. Zbl0271.32001MR1045639
  14. [14] B. Jöricke, Removable singularities of CR-functions, Ark. Mat.26 (1988), 117-143. Zbl0653.32013MR948284
  15. [15] G. Lupacciolu, Topological properties of q-convex set, Trans. Amer. Math. Soc.337 (1993), 427-435. Zbl0776.32013MR1091708
  16. [16] G. Lupacciolu, Complements of domains with respect to hulls of outside compact sets, Math. Z.214 (1993), 117-117. Zbl0798.32013MR1234601
  17. [17] G. Lupacciolu, On the envelopes of holomorphy of strictly Levi-convex hypersurfaces, In: "Colloque d'Analyse Complexe et Géométrie" (Marseille, janvier 1992), Astérisqe217, Soc. Math. France, 1993, pp. 183-192. Zbl0794.32013MR1247758
  18. [18] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat.32 (1994), 455-473. Zbl0823.32004MR1318542
  19. [19] G. Lupacciolu, Holomorphic extension to open hulls, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV), to appear. Zbl0889.32013MR1433427
  20. [20] E.E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and Hauptvermutung, Ann. of Math.56 (1952), 96-114. Zbl0048.17102MR48805
  21. [21 ] J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math.72 (1960), 521-554. Zbl0108.18101MR121804
  22. [22] J. Munkres, "Elementary Differential Topology" (third printing), Princeton N.J.: Ann. Math. Studies54, Princeton University Press, 1973. Zbl0107.17201MR198479
  23. [23] E.L. Stout, Removable singularities for the boundary values of holomorphic functions, In: "Several Complex Variable: Proceedings of the Mittag-Leffler Institute, 1987-1988", Princeton, N.J.: Math. Notes 38, Princeton University Press, 1993, pp. 600-629. Zbl0772.32011MR1207885
  24. [24] G. Tomassini, Sur les algèbres A0 (D) et A∞ (D) d' un domaine pseudoconvexe non borné, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 10 (1983), 243-256. Zbl0523.32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.