Holomorphic extension to open hulls

Guido Lupacciolu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 2, page 363-382
  • ISSN: 0391-173X

How to cite

top

Lupacciolu, Guido. "Holomorphic extension to open hulls." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1996): 363-382. <http://eudml.org/doc/84234>.

@article{Lupacciolu1996,
author = {Lupacciolu, Guido},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {holomorphic functions; CR-functions; holomorphic extension},
language = {eng},
number = {2},
pages = {363-382},
publisher = {Scuola normale superiore},
title = {Holomorphic extension to open hulls},
url = {http://eudml.org/doc/84234},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Lupacciolu, Guido
TI - Holomorphic extension to open hulls
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 363
EP - 382
LA - eng
KW - holomorphic functions; CR-functions; holomorphic extension
UR - http://eudml.org/doc/84234
ER -

References

top
  1. [1] A. Andreotti - A. Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa27 (1973), 187-263. Zbl0278.32007MR425160
  2. [2] C Bănică - O. Stănăşilă, Algebraic Methods in the Global Theory of Compex Spaces, Wiley, London - New York1976. Zbl0334.32001MR463470
  3. [3] E. Casadio Tarabusi - S. Trapani, Envelopes of holomorphy of Hartogs and circular domains, Pacific J. Math.149 (1991), 231-249. Zbl0685.32008MR1105697
  4. [4] A. Cassa, Coomologia separata sulle varietà analitiche complesse, Ann. Scuola Norm. Sup. Pisa25 (1971), 291-323. Zbl0232.46010MR357851
  5. [5] E.M. Chirka - E.L. Stout, Removable Singularities in the Boundary, Contributions to Complex Analysis and Analytic Geometry. Dedicated to Pierre Dolbeault. Editors H.Skoda and J.-M. Trépreau, Vieweg, 1994, pp.43-104. Zbl0820.32008MR1319345
  6. [6] A. Grothendieck, Topological vector spaces, Gordon and Breach, New York- London-Paris, 1973. Zbl0275.46001MR372565
  7. [7] R.C. Gunning - H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall,Inc., Englewood Cliffs, N.J., 1965 Zbl0141.08601MR180696
  8. [8] F.R. Harvey - H.B. Lawson, On boundaries of complex analytic varieties I, Ann. of Math.102 (1975), 223-290. Zbl0317.32017MR425173
  9. [9] F.R. Harvey R.O. WELLS Jr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc.136 (1969), 509-516. Zbl0175.37204MR235158
  10. [10] G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math.124 (1986),177-191. Zbl0597.32014MR850675
  11. [11] G. Lupacciolu, Topological properties of q-convex sets, Trans. Amer. Math. Soc.337 (1993),427-435. Zbl0776.32013MR1091708
  12. [12] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat.32 (1994), 455-473. Zbl0823.32004MR1318542
  13. [13] G. Lupacciolu, On the envelopes of holomorphy of strictly Levi-convex hypersurfaces, Colloque d'Analyse Complexe et Géométrie (Marseille, janvier 1992), Astérisque217, Soc. Math. France, 1993, pp.183-192. Zbl0794.32013MR1247758
  14. [14] G. Lupacciolu, Complements of domains with respect to hulls of outside compact sets, Math. Z.214 (1993), 111-117. Zbl0798.32013MR1234601
  15. [15] R. Narasimhan, On the Homology Groups of Stein Spaces, Invent.Math.2 (1967),377-385. Zbl0148.32202MR216525
  16. [16] J.P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, CBRM Colloque de Bruxelles (1953). Zbl0053.05302MR64155
  17. [17] J.P. Serre, Un théorème de dualité, Comment. Math. Helv.29 (1955), 9-26. Zbl0067.16101MR67489
  18. [18] E.L. Stout, Removable Singularities for the Boundary Values of Holomorphic Functions, Several Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987-1988, Math. Notes38, Princeton University Press, Princeton, N.J., 1993, pp.600-629. Zbl0772.32011MR1207885
  19. [19] B.M. Weinstock, Continuous boundary values of analytic functions of several complex variables, Proc. Amer. Math. Soc.21 (1969),463-466. Zbl0174.38702MR237825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.