A parabolic quasi-variational inequality arising in a superconductivity model

José Francisco Rodrigues; Lisa Santos

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 1, page 153-169
  • ISSN: 0391-173X

How to cite

top

Rodrigues, José Francisco, and Santos, Lisa. "A parabolic quasi-variational inequality arising in a superconductivity model." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 153-169. <http://eudml.org/doc/84399>.

@article{Rodrigues2000,
author = {Rodrigues, José Francisco, Santos, Lisa},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {longitudinal geometry; asymptotic behavior},
language = {eng},
number = {1},
pages = {153-169},
publisher = {Scuola normale superiore},
title = {A parabolic quasi-variational inequality arising in a superconductivity model},
url = {http://eudml.org/doc/84399},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Rodrigues, José Francisco
AU - Santos, Lisa
TI - A parabolic quasi-variational inequality arising in a superconductivity model
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 153
EP - 169
LA - eng
KW - longitudinal geometry; asymptotic behavior
UR - http://eudml.org/doc/84399
ER -

References

top
  1. [1] C. Baiocchi - A. Capelo, "Variational and Quasivariational Inequalities. Applications to Free Boundary Problems", J. Wiley & Sons, Chischester-New York, 1984. Zbl0551.49007MR745619
  2. [2] A. Bensoussan - J.L. Lions, "Contrôle impulsionel et inéquations quasivariationelles", Dunod, Paris, 1982. Zbl0491.93002
  3. [3] E.H. Brandt, Electric field in superconductors with regular cross-sections, Phys. Rev. B52 (1995), 15442-15457. 
  4. [4] E. Dibenedetto, "Degenerate Parabolic Equations", Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
  5. [5] C. Gerhardt, On the existence and uniqueness of a warpeningfunction in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section, A. Dold - B. Eckmann - P. Germain - B. Nayroles (eds.), Lecture Notes in Math. 503, Springer, Berlin, 1976. Zbl0354.73034MR669229
  6. [6] Y.B. Kim - C.F. Hempstead - A.R. Strnad, Critical persistent currents in hard superconductors, Phys. Rev. Lett.9 (1962), 306-309. 
  7. [7] M.M. Kunze - M.D.P. Monteiro Marques, A note on Lipschitz continuous solutions of a parabolic quasi-variational inequality, In "Nonlinear Evolutionary Equations and their Applications", T. T. Li - L. W. Lin - J. F. Rodrigues (eds.), World Scientific, Singapore, 1999, pp. 109-115. Zbl0972.47058MR1734576
  8. [8] M.M. Kunze - J.F. Rodrigues, An elliptic quasi-variational inequality with gradient constants and some of its applications, Math. Methods. Appl. Sci., to appear. Zbl0956.35059MR1765905
  9. [9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, "Linear and quasilinear equations of parabolic type", Translations of Mathematical Monographs23, AMS, 1968. Zbl0174.15403MR241822
  10. [10] L. Prighozin, Variational model of sandpile growth, European J. Appl. Math.7 (1996), 225-235. Zbl0913.73079MR1401168
  11. [11] L. Prighozin, On the Bean critical state model in superconductivity, European J. Appl. Math.7 (1996), 237-247. Zbl0873.49007MR1401169
  12. [12] L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugaliae Mathematica48 (1991), 441-468. Zbl0773.49006MR1147610
  13. [13] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl.146 (1987), 65-96. Zbl0629.46031MR916688

NotesEmbed ?

top

You must be logged in to post comments.