A parabolic quasi-variational inequality arising in a superconductivity model
José Francisco Rodrigues; Lisa Santos
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 1, page 153-169
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] C. Baiocchi - A. Capelo, "Variational and Quasivariational Inequalities. Applications to Free Boundary Problems", J. Wiley & Sons, Chischester-New York, 1984. Zbl0551.49007MR745619
- [2] A. Bensoussan - J.L. Lions, "Contrôle impulsionel et inéquations quasivariationelles", Dunod, Paris, 1982. Zbl0491.93002
- [3] E.H. Brandt, Electric field in superconductors with regular cross-sections, Phys. Rev. B52 (1995), 15442-15457.
- [4] E. Dibenedetto, "Degenerate Parabolic Equations", Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
- [5] C. Gerhardt, On the existence and uniqueness of a warpeningfunction in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section, A. Dold - B. Eckmann - P. Germain - B. Nayroles (eds.), Lecture Notes in Math. 503, Springer, Berlin, 1976. Zbl0354.73034MR669229
- [6] Y.B. Kim - C.F. Hempstead - A.R. Strnad, Critical persistent currents in hard superconductors, Phys. Rev. Lett.9 (1962), 306-309.
- [7] M.M. Kunze - M.D.P. Monteiro Marques, A note on Lipschitz continuous solutions of a parabolic quasi-variational inequality, In "Nonlinear Evolutionary Equations and their Applications", T. T. Li - L. W. Lin - J. F. Rodrigues (eds.), World Scientific, Singapore, 1999, pp. 109-115. Zbl0972.47058MR1734576
- [8] M.M. Kunze - J.F. Rodrigues, An elliptic quasi-variational inequality with gradient constants and some of its applications, Math. Methods. Appl. Sci., to appear. Zbl0956.35059MR1765905
- [9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, "Linear and quasilinear equations of parabolic type", Translations of Mathematical Monographs23, AMS, 1968. Zbl0174.15403MR241822
- [10] L. Prighozin, Variational model of sandpile growth, European J. Appl. Math.7 (1996), 225-235. Zbl0913.73079MR1401168
- [11] L. Prighozin, On the Bean critical state model in superconductivity, European J. Appl. Math.7 (1996), 237-247. Zbl0873.49007MR1401169
- [12] L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugaliae Mathematica48 (1991), 441-468. Zbl0773.49006MR1147610
- [13] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl.146 (1987), 65-96. Zbl0629.46031MR916688