The construction of principal spectral curves for Lane-Emden systems and applications
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 1, page 193-229
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMontenegro, Marcos. "The construction of principal spectral curves for Lane-Emden systems and applications." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 193-229. <http://eudml.org/doc/84401>.
@article{Montenegro2000,
author = {Montenegro, Marcos},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Lane-Emden system; spectral theory},
language = {eng},
number = {1},
pages = {193-229},
publisher = {Scuola normale superiore},
title = {The construction of principal spectral curves for Lane-Emden systems and applications},
url = {http://eudml.org/doc/84401},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Montenegro, Marcos
TI - The construction of principal spectral curves for Lane-Emden systems and applications
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 193
EP - 229
LA - eng
KW - Lane-Emden system; spectral theory
UR - http://eudml.org/doc/84401
ER -
References
top- [1] A. Alvino - V. Ferone - G. Trombetti, On the properties of some nonlinear eigenvalues, SIAM J. Math. Anal., vol. 29, n. 2 (1998), 437-451. Zbl0908.35094MR1616519
- [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.18 (1976), 620-709. Zbl0345.47044MR415432
- [3] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris305 (1987), 725-728. Zbl0633.35061
- [4] H. Berestycki - L. Nirenberg - S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math.XLVII (1994), 47-92. Zbl0806.35129
- [5] I. Birindelli, Hopf's lemma and anti-maximum principle in general domains, J. Differential Equations119 (1995), 450-472. Zbl0831.35114
- [6] I. Birindelli - E. Mitidieri - G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, preprint. Zbl0940.35147
- [7] J.M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Série A265 (1967), 333-336. Zbl0164.16803
- [8] H. Brézis - S. Kamin, Sublinear elliptic equations in R N, Manuscripta Math.74 (1992), 87-106. Zbl0761.35027
- [9] K.J. Brown - C.C. Lin, On the existence of positive eigenfunctions for a eigenvalue problem with indefinite weight-function, J. Math. Anal. Appl.75 (1980), 112-120. Zbl0437.35058
- [10] R.S. Cantrell - K. Schmidt, On the eigenvalue problem for coupled elliptic systems, SIAM J. Math. Anal.17 (1986), 850-862. Zbl0606.35033
- [11] PH. Clément - D.G. De Figueiredo - E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, vol. 17, n. 5 & 6 (1992), 923-940. Zbl0818.35027
- [12] PH. Clément - R.C.A.M. Van Der Vorst, On a semilinear elliptic system, Differential Integral Equations8 (1995), 1317-1329. Zbl0835.35041MR1329843
- [13] D.G. De Figueiredo - P.L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc.343 (1994), 99-116. Zbl0799.35063MR1214781
- [14] B. De Pagter, Irreducible compact operators, Math. Z.192 (1986), 149-153. Zbl0607.47033MR835399
- [15] M.D. Donsker - S.R.S. Varadhan, On a variational formula for the principal eigenvalue for operators with maximum principle, Proc. Nat. Acad. Sci. U.S.A.72 (1975), 780-783. Zbl0353.49039MR361998
- [16] M.D. Donsker - S.R.S. Varadhan, On the principal eigenvalue of second order elliptic differential operators, Comm. Pure Appl. Math.29 (1976), 595-621. Zbl0356.35065MR425380
- [17] P.L. Felmer - S. Martínez, existence and uniqueness of positive solutions to certain differential systems, Adv. Differential Equations, vol. 3, n. 4 (1998), 575-593. Zbl0946.35028MR1659242
- [18] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer-Verlag, 1983. Zbl0562.35001MR737190
- [19] J.-P. Gossez - E. Lami-Dozo, On the principal eigenvalue of a second order linear elliptic problem, Arch. Rational Mech. Anal.89 (1985), 169-175. Zbl0585.35075MR786544
- [20] P. Hess, On the eigenvalue problem for weakly coupled elliptic systems, Arch. Rational Mech. Anal.81 (1983), 151-159. Zbl0509.35029MR682266
- [21] P. Hess - T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations5 (1980), 999-1030. Zbl0477.35075MR588690
- [22] J. Hulshof - R.C.A.M. Van Der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal.114 (1993), 32-58. Zbl0793.35038MR1220982
- [23] M.A. Krasnoselskii, Fixed points of cone-compressing or cone-extending operators, Sov. Math. Dokl.1 (1960), 1285-1288. Zbl0098.30902MR131158
- [24] M.A. Krasnoselskii, "Positive Solutions of Operator Equations", Noordhoff, 1964. Zbl0121.10604MR181881
- [25] M.G. Krein - M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl.10 (1962), 199-325. MR38008
- [26] J. López-Gómez, The maximum principle and the existence of principal eigenvalue for some linear weighted boundary value problems, J. Differential Equations127 (1996), 263-294. Zbl0853.35078MR1387266
- [27] J. López-Gómez - M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Differential Integral Equations, vol. 7, n. 2 (1994), 383-398. Zbl0827.35019MR1255895
- [28] A. Manes - A.M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital.7 (1973), 285-301. Zbl0275.49042MR344663
- [29] M. Montenegro, Sublinearity for semilinear elliptic systems, preprint.
- [30] M. Montenegro, Liouville type theorems and blow-up for semilinear differential systems, preprint.
- [31] M. Montenegro, Existence of solutions for some semilinear elliptic systems with singular coefficients, to appear in Nonlinear Analysis. Zbl1027.35030MR1835614
- [32] R.D. Nussbaum - Y. Pinchover, On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications, J. Anal. Math.59 (1992), 161-177. Zbl0816.35095MR1226957
- [33] M.H. Protter, The generalized spectrum of second orderelliptic systems, Rocky Mountain J. Math.9 (1979), 503-518. Zbl0422.35061MR528748
- [34] M.H. Protter - H.F. Weinberger, "Maximum Principles in Differential Equations", Prentice Hall, New Jersey, 1967. Zbl0153.13602MR219861
- [35] G. Sweers, Strong positivity in C(Ω) for elliptic systems, Math. Z.209 (1992), 251-271. Zbl0727.35045
- [36] R.C.A.M. Van Der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal.116 (1991), 375-398. Zbl0796.35059MR1132768
- [37] W. Walter, Sturm-Liouville theory for the radial Δp-operator, Math. Z.227, (1998) 175-185. Zbl0915.34022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.