A relaxation theorem in the space of functions of bounded deformation
Ana Cristina Barroso; Irene Fonseca; Rodica Toader
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 1, page 19-49
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBarroso, Ana Cristina, Fonseca, Irene, and Toader, Rodica. "A relaxation theorem in the space of functions of bounded deformation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 19-49. <http://eudml.org/doc/84402>.
@article{Barroso2000,
author = {Barroso, Ana Cristina, Fonseca, Irene, Toader, Rodica},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {relaxation; special functions of bounded deformation; quasiconvexity; Poincaré type inequality},
language = {eng},
number = {1},
pages = {19-49},
publisher = {Scuola normale superiore},
title = {A relaxation theorem in the space of functions of bounded deformation},
url = {http://eudml.org/doc/84402},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Barroso, Ana Cristina
AU - Fonseca, Irene
AU - Toader, Rodica
TI - A relaxation theorem in the space of functions of bounded deformation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 19
EP - 49
LA - eng
KW - relaxation; special functions of bounded deformation; quasiconvexity; Poincaré type inequality
UR - http://eudml.org/doc/84402
ER -
References
top- [1] L. Ambrosio - A. Coscia - G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rat. Mech. Anal.139 (1997), 201-238. Zbl0890.49019MR1480240
- [2] L. Ambrosio - G. Dal Maso, On the relaxation in B V (Ω; R m) of quasi-convex integrals, J. Funct. Anal.109 (1992), 76-97. Zbl0769.49009
- [3] L. Ambrosio - S. Mortola - V.M. Tortorelli, Functionals with linear growth defined on vector valued B V functions, J. Math. Pures et Appl.70 (1991), 269-323. Zbl0662.49007MR1113814
- [4] A.C. Barroso - G. Bouchitté - G. Buttazzo - I. Fonseca, Relaxation of bulk and interfacial energies, Arch. Rat. Mech. Anal.135 (1996), 107-173. Zbl0876.49037MR1418463
- [5] G. Bellettini - A. Coscia - G. Dal Maso, Special functions of bounded deformation, Math. Z.228 (1998), 337-351. Zbl0914.46007MR1630504
- [6] A. Braides - A. Defranceschi - E. Vitali, A relaxation approach to Hencky's plasticity, Appl. Math. Optimization35 (1997), 45-68. Zbl0860.49014MR1418263
- [7] G. Bouchitté - I. Fonseca - L. Mascarenhas, A global method for relaxation, Arch. Rat. Mech. Anal.145 (1998), 51-98. Zbl0921.49004MR1656477
- [8] B. Dacorogna, "Direct Methods in the Calculus of Variations ", Springer, 1989. Zbl0703.49001MR990890
- [9] F.B. Ebobisse, On lower semicontinuity of integral functionals in LD(Q), Ricerche Mat. (to appear). Zbl1027.49014MR1795030
- [10] I. Fonseca - S. Müller, Quasiconvex integrands and lower semicontinuity in L1, SIAM J. Math. Anal.23 (1992), 1081-1098. Zbl0764.49012MR1177778
- [11] I. Fonseca - S. Muller, Relaxation of quasiconvex functionals in B V (Ω; Rp), Arch. Rat. Mech. Anal.123 (1993), 1-49. Zbl0788.49039
- [12] I. Fonseca - S. Müller, A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal.30 (1999), 1355-1390. Zbl0940.49014MR1718306
- [13] R.V. Kohn, "New Estimates for Deformations in Terms of Their Strains", Ph.D. Thesis, Princeton University, 1979.
- [14] H. Matthies - G. Strang - E. Christiansen, "The Saddle Point of a Differential Program", Energy Methods in Finite Element Analysis, Wiley, New York, 1979. MR537013
- [15] D.A. Ornstein, Non-inequality for differential operators in the L1 -norm, Arch. Rat. Mech. Anal.11 (1962), 40-49. Zbl0106.29602MR149331
- [16] Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set, Siberian Math. J.9 (1968), 1039-1045 (translation of Sibirsk. Mat. Z. 9 (1968), 1386-1394). Zbl0169.18301MR240274
- [17] P.M. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A286 (1978), 1201-1204. Zbl0378.35057MR501114
- [18] P.M. Suquet, Un espace fonctionel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math (6) 1 (1979), 77-87. Zbl0405.46027MR533600
- [19] R. Temam, "Problèmes Mathématiques en Plasticité", Gauthier-Villars, 1983. Zbl0547.73026MR711964
- [20] R. Temam - G. Strang, Functions of bounded deformation, Arch. Rat. Mech. Anal.75 (1980), 7-21. Zbl0472.73031MR592100
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.