Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 1, page 1-17
- ISSN: 0391-173X
Access Full Article
topHow to cite
topShimomura, Shun. "Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 1-17. <http://eudml.org/doc/84403>.
@article{Shimomura2000,
author = {Shimomura, Shun},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {singularities; Schlesinger system; degenerate Garnier system; Painlevé property},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Scuola normale superiore},
title = {Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation},
url = {http://eudml.org/doc/84403},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Shimomura, Shun
TI - Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 1
EP - 17
LA - eng
KW - singularities; Schlesinger system; degenerate Garnier system; Painlevé property
UR - http://eudml.org/doc/84403
ER -
References
top- [1] H. Flaschka - A.C. Newell, Monodromy- and spectrum-preserving deformations I, Comm. Math. Phys.76 (1980), 65-116. Zbl0439.34005MR588248
- [2] R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegene wesentlich singulären Stellen, Math. Ann.63 (1907), 301-321. Zbl38.0362.01MR1511408JFM38.0362.01
- [3] R. Garnier, Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup.29 (1912), 1-126. Zbl43.0382.01MR1509146JFM43.0382.01
- [4] K. Iwasaki - H. Kimura - S. Shimomura - M. Yoshida, "From Gauss to Painlevé, A Modern Theory of Special Functions ", Vieweg, Braunschweig, 1991. Zbl0743.34014MR1118604
- [5] M. Jimbo - T. Miwa - K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, — General theory and τ-function —, Phys. D2 (1981), 306-352. Zbl1194.34167
- [6] M. Jimbo - T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II, Phys. D2 (1981), 407-448. Zbl1194.34166MR625446
- [7] H. Kimura, The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl.155 (1989), 25-74. Zbl0693.34043MR1042827
- [8] H. Kimura - K. Okamoto, On the polynomial Hamiltonian structure of the Garnier system, J. Math. Pures Appl. 63 (1984), 129-146. Zbl0562.34004MR776915
- [9] B. Malgrange, "Sur les déformations isomonodromiques, I: Singularités régulières", Séminaire de l'École Norm. Sup., Birkhäuser, 1982. Zbl0528.32017MR728431
- [10] T. Miwa, Painlevé property of monodromy preserving deformation equations and the analyticity of τ -functions, Publ. Res. Inst. Math. Sci.17 (1981), 703-721. Zbl0605.34005
- [11] M. Noumi - Y. Yamada, Higher order Painlevé equations of type Al (1), Funkcial. Ekvac. 41 (1998), 483-503. Zbl1140.34303MR1676885
- [12] M. Noumi - Y. Yamada, private communication.
- [13] K. Okamoto, Isomonodromic deformation and Painleve equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math.33 (1986), 575-618. Zbl0631.34011MR866050
- [14] L. Schlesinger, Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math.141 (1912), 96-145. Zbl43.0385.01JFM43.0385.01
- [15] K. Ueno, Monodromy preserving deformation of linear differential equations with irregular singular points, Proc. Japan Acad. Ser. A Math. Sci.56 (1980), 97-102. Zbl0487.34004MR575985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.