Pseudoconvex domains over q -complete manifolds

Viorel Vâjâitu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 3, page 503-530
  • ISSN: 0391-173X

How to cite

top

Vâjâitu, Viorel. "Pseudoconvex domains over $q$-complete manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 503-530. <http://eudml.org/doc/84416>.

@article{Vâjâitu2000,
author = {Vâjâitu, Viorel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudoconvexity; Riemann domain},
language = {eng},
number = {3},
pages = {503-530},
publisher = {Scuola normale superiore},
title = {Pseudoconvex domains over $q$-complete manifolds},
url = {http://eudml.org/doc/84416},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Vâjâitu, Viorel
TI - Pseudoconvex domains over $q$-complete manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 503
EP - 530
LA - eng
KW - pseudoconvexity; Riemann domain
UR - http://eudml.org/doc/84416
ER -

References

top
  1. [1] L. Alessandrini - A. Silva, On a theorem of Lelong, Math. Nachr.147 (1990), 83-88. Zbl0722.32009MR1127312
  2. [2] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France90 (1962), 193-259. Zbl0106.05501MR150342
  3. [3] E. Ballico, Coverings of complex spaces and q-completeness, Riv. Mat. Univ. Parma (4) 7 (1981), 443-452. Zbl0488.32006MR671391
  4. [4] A. Cassa, Formule di Künneth per la coomologia a valori in un fascio, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 27 (1973), 905-931. Zbl0335.55006MR374476
  5. [5] M. Coltoiu, Complete locally pluripolar sets, J. reine angew. Math.412 (1990), 108-112. Zbl0711.32008MR1074376
  6. [6] J.-P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z.204 (1990), 283-295. Zbl0682.32017MR1055992
  7. [7] K. Diederich - J.-E. Forness, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), 291-305. Zbl0586.32022MR809717
  8. [8] F. Docquier - H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann.140 (1960), 94-123. Zbl0095.28004MR148939
  9. [9] J.-E. Fornæss, A counterexample for the Levi problem for branched Riemann domains over Cn, Math. Ann.234 (1978), 275-277. Zbl0427.32014MR492397
  10. [10] J.-E. Fornæss - N. Sibony, Oka's inequality for currents and applications, Math. Ann.301 (1995), 399-419. Zbl0832.32010MR1324517
  11. [11] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ.30 (1990), 637-649. Zbl0728.32009MR1088347
  12. [12] O. Fujita, On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order, Ann. Reports of Graduate School of Human Culture, Nara Women's Univ.7 (1992), 77-81. 
  13. [13] R. Fujita, Domaines sans point critique intérieur sur l'espace projectif complexe, J. Math. Soc. Japan15 (1963), 443-474. Zbl0138.06404MR159034
  14. [14] H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. of Math.68 (1958), 460-472. Zbl0108.07804MR98847
  15. [15] H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z.81 (1963), 377-391. Zbl0151.09702MR168798
  16. [16] H. Grauert - R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorphkonvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helv. 31 (1956/57), 152-183. Zbl0073.30301MR88028
  17. [17] H. Grauert - R. Remmert, Singularitäten komplexer Mannigfaltigkeiten und Riemannsche Gebiete, Math. Z.67 (1957), 103-128. Zbl0077.28902MR87186
  18. [18] E.E. Greene - H. Wu, C∞ approximation of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup.12 (1979), 47-84. Zbl0415.31001
  19. [19] A. Hirschowitz, Pseudoconvexité au-dessus d'espaces plus au moins homogènes, Invent. Math.26 (1974), 303-322. Zbl0275.32009MR357857
  20. [20] A. Hirschowitz, Le problème de Levi pour les espaces homogènes, Bull. Soc. Math. France103 (1975), 191-201. Zbl0316.32004MR399510
  21. [21] L.R. Hunt - J.J. Murray, q-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J.25 (1978), 299-316. Zbl0378.32013MR512901
  22. [22] B. Jennane, Problème de Levi et morphisme localement de Stein, Math. Ann.256 (1981), 37-42. Zbl0491.32012MR620120
  23. [23] P. Le Barz, A propos des revêtments ramifiés d'espaces de Stein, Math. Ann.222 (1976), 63-69. Zbl0328.32012MR417449
  24. [24] P. Lelong, Domaines convexex par rapport aux fonctions plurisousharmoniques, J. Analyse Math.2 (1952), 178-208. Zbl0049.18102MR54736
  25. [25] K. Matsumoto, Pseudoconvex domains of general order over Stein manifolds, Kyushu J. Math.44 (1990), 95-107. Zbl0719.32010MR1072304
  26. [26] K. Matsumoto, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds, J. Math. Soc. Japan48 (1996), 85-107. Zbl0860.32003MR1361549
  27. [27] R. Narasimhan, "The Levi problem in the theory of several complex variables", Proc. Intemat. Congr. Mathematicians (Sockholm, 1962), 383-385, Inst. Mittag-Leffler, Djursholm. Zbl0116.06103MR176096
  28. [28] F. Norquet - Y.-T. Siu, Holomorphic convexity of analytic cycle, Bull. Soc. math. France105 (1977), 191-223. Zbl0382.32010MR590090
  29. [29] K. Oka, Domaines finis sans point critique intérieur, Japan. J. Math.27 (1953), 97-155. Zbl0053.24302MR71089
  30. [30] M. Peternell, Continuous q-convex exhaustion functions, Invent. Math.85 (1986), 249-262. Zbl0599.32016MR846928
  31. [31] M. Peternell, q-completeness of subsets in complex projective space, Math. Z.195 (1987), 443-450. Zbl0611.32008MR895316
  32. [32] M. Peternell, Algebraische Varietäten und q-vollständige komplexe Räume, Math. Z.200 (1989), 547-581. Zbl0675.32014MR987586
  33. [33] J.-L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certain fibrés analytique, Sém. P. Lelong (Analyse), 1973/74, Lecture Notes in Math., Vol. 474, Springer, Berlin, 1975, pp. 155-179. Zbl0309.32011MR399524
  34. [34] Y.-T. Siu - S.-T. Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math.59 (1980), 189-204. Zbl0442.53056MR577360
  35. [35] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemanniene dans un espace projectif, J. Math. Soc. Japan16 (1964), 159-181. Zbl0141.08804MR173789
  36. [36] A. Takeuchi, Domaines pseudoconvexes sur les variétés kählériennes, J. Math. Kyoto Univ.6 (1967), 323-357. Zbl0179.12203MR217335
  37. [37] T. Ueda, Pseudoconvex domains over Grassmann manifolds, J. Math. Kyoto Univ.20 (1980), 391-394. Zbl0456.32011MR582173
  38. [38] V. Vâjâitu, On the equivalence of the definitions of q-convex spaces, Arch. Math.61 (1993), 567-575. Zbl0816.32014MR1254069
  39. [39] V. Vâjâitu, Approximation theorems and homology of q-Runge domains in complex spaces, J. Reine Angew. Math.449 (1994), 179-199. Zbl0795.32004MR1268585
  40. [40] V. Vâjâitu, Local q-complete open sets in Stein spaces with isolated singularities, Kyushu J. Math.51 (1997), 355-368. Zbl0917.32012MR1470159
  41. [41] V. Vâjâitu, One dimensional fibering over q-complete spaces, Nagoya Math. J. 151 (1998), 99-106. Zbl0927.32010MR1650281
  42. [42] V. Vâjâitu, A Levi problem for continuous strongly q-plurisubharmonic functions, C. R. Acad. Sci. Paris328 (1999), 573-578. Zbl0935.31006MR1679998

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.