approximations of convex, subharmonic, and plurisubharmonic functions
Annales scientifiques de l'École Normale Supérieure (1979)
- Volume: 12, Issue: 1, page 47-84
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGreene, R. E., and Wu, H.. "$C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions." Annales scientifiques de l'École Normale Supérieure 12.1 (1979): 47-84. <http://eudml.org/doc/82031>.
@article{Greene1979,
author = {Greene, R. E., Wu, H.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {convex, subharmonic, plurisubharmonic functions; functions on Riemannian manifolds; smooth approximations of continuous functions; partitions of unity; smoothing by convolution},
language = {eng},
number = {1},
pages = {47-84},
publisher = {Elsevier},
title = {$C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions},
url = {http://eudml.org/doc/82031},
volume = {12},
year = {1979},
}
TY - JOUR
AU - Greene, R. E.
AU - Wu, H.
TI - $C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1979
PB - Elsevier
VL - 12
IS - 1
SP - 47
EP - 84
LA - eng
KW - convex, subharmonic, plurisubharmonic functions; functions on Riemannian manifolds; smooth approximations of continuous functions; partitions of unity; smoothing by convolution
UR - http://eudml.org/doc/82031
ER -
References
top- [1] L. AHLFORS and L. SARIO, Riemann Surfaces (Princeton Mathematical Series, N°. 26, Princeton University Press, Princeton, N.J. 1960). Zbl0196.33801MR22 #5729
- [2] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., No. 194, Springer-Verlag, New York, 1971). Zbl0223.53034MR43 #8025
- [3] M. BRELOT, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1960 (reissued 1967). Zbl0257.31001
- [4] M. P. GAFFNEY, The Conservation Property of the Heat Equation on Riemannian Manifolds (Comm. Pure Appl. Math., 12, 1959, pp. 1-11). Zbl0102.09202MR21 #892
- [5] R. E. GREENE and H. WU, (a) On the Subharmonicity and Plurisubharmonicity of Geodesically Convex Functions (Indiana Univ. Math. J., 22, 1973, pp. 641-653) ; (b) Integrals of Subharmonic Functions on Manifolds of Nonnegative Curvature (Invent. Math., 27, 1974, pp. 265-298) ; (c) Approximation Theorems, C∞ Convex Exhaustions and Manifolds of Positive Curvature (Bull. Amer. Math. Soc., 81, 1975, pp. 101-104) ; (d) Whitney's Imbedding Theorem by Solutions of Elliptic Equations and Geometric Consequences (Proc. Symp. Pure Math., Vol. 27, part II, Amer. Math. Soc., Providence, R.I., 1975, pp. 287-296) ; (e) C∞ Convex Functions and Manifolds of Positive Curvature (Acta Math., 137, 1976, pp. 209-245) ; (f) On Kähler Manifolds of Positive Bisectional Curvature and a Theorem of Hartogs (Abh. Math. Sem., Univ. Hamburg, 47, 1978, pp. 171-185). MR54 #10672
- [6] M. HERVÉ, Analytic and Plurisubharmonic Functions in Finite and Infinite Dimensional Spaces (Lecture Notes in Math. No. 198, Springer-Verlag, Berlin-Heidelberg-New York, 1971). Zbl0214.36404MR57 #6479
- [7] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel (Ann. Ins. Fourier, Grenoble, 12, 1962, pp. 415-571). Zbl0101.08103MR25 #3186
- [8] M. HIRSCH, Differential Topology, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0356.57001MR56 #6669
- [9] W. LITTMAN, A Strong Maximum Principle for Weakly L-Subharmonic Functions [J. Math. and Mech. (Indiana Univ. Math. J.) 8, 1959, pp. 761-770]. Zbl0090.08201MR21 #6468
- [10] J. R. MUNKRES, Elementary Differential Topology [Ann. Math. Studies, No. 54, Princeton Univ. Press, Princeton, N.J., (revised edition) 1966]. Zbl0161.20201MR33 #6637
- [11] R. RICHBERG, Stetige Streng Pseudoconvexe Funktionen (Math. Ann., 1975, 1968, pp. 257-286). Zbl0153.15401
- [12] S.-T. YAU, Some Function-Theoretic Properties of Complete Riemannian Manifolds and their Applications to Geometry (Indiana Univ. Math. J., 25, 1976, pp. 659-670). Zbl0335.53041MR54 #5502
Citations in EuDML Documents
top- Helga Schirmer, Nielsen theory of transversal fixed point sets (with an appendix: and C0 fixed point sets are the same, by R. E. Greene)
- R. E. Greene, K. Shiohama, Convex functions on complete noncompact manifolds : differentiable structure
- Atsushi Kasue, A compactification of a manifold with asymptotically nonnegative curvature
- Vicente Miquel, Vicente Palmer, Mean curvature comparison for tubular hypersurfaces in Kähler manifolds and some applications
- Zahra Sinaei, Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
- Atsushi Kasue, On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold
- Jean-Pierre Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète
- Viorel Vâjâitu, Pseudoconvex domains over -complete manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.