An eigenvalue problem related to Hardy’s L P inequality

Moshe Marcus; Itai Shafrir

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 3, page 581-604
  • ISSN: 0391-173X

How to cite

top

Marcus, Moshe, and Shafrir, Itai. "An eigenvalue problem related to Hardy’s $L^P$ inequality." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 581-604. <http://eudml.org/doc/84419>.

@article{Marcus2000,
author = {Marcus, Moshe, Shafrir, Itai},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {eigenvalue problem; singular elliptic equation; Hardy's inequality; comparison principle},
language = {eng},
number = {3},
pages = {581-604},
publisher = {Scuola normale superiore},
title = {An eigenvalue problem related to Hardy’s $L^P$ inequality},
url = {http://eudml.org/doc/84419},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Marcus, Moshe
AU - Shafrir, Itai
TI - An eigenvalue problem related to Hardy’s $L^P$ inequality
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 581
EP - 604
LA - eng
KW - eigenvalue problem; singular elliptic equation; Hardy's inequality; comparison principle
UR - http://eudml.org/doc/84419
ER -

References

top
  1. [1] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sèr. I-Math.305 (1987), 725-728. Zbl0633.35061MR920052
  2. [2] A. Ancona, Une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris Sér. I292 (1981), 477-480. Zbl0461.46028MR612540
  3. [3] A. Ancona, On strong barriers and inequality of Hardy for domains in Rn, J. London Math. Soc.34 (1986), 274-290. Zbl0629.31002MR856511
  4. [4] W. Allegretto - Y.X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal.32 (1998), 819-830. Zbl0930.35053MR1618334
  5. [5] H. Brezis - M. Marcus, Hardy's inequality revisited, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 25 (1997), 217-237. Zbl1011.46027MR1655516
  6. [6] H. Brezis - M. Marcus - I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal.171 (2000), 177-191. Zbl0953.26006MR1742864
  7. [7] H. Brezis - L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), 55-64. Zbl0593.35045MR820658
  8. [8] E.B. Davies, The Hardy constant, Quart. J. Math. Oxford46 (1995), 417-431. Zbl0857.26005MR1366614
  9. [9] E. Di Benedetto, C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983). Zbl0539.35027
  10. [10] J.I. Diaz - J.E. Saa, Existence et unicité de solutions positives pour certains équations elliptiques quasilinéaires de la première, C. R. Acad. Sci. Paris Sér. I305 (1987), 521-524. Zbl0656.35039MR916325
  11. [11] D. Gilbarg - N. Trudinger, "Elliptic Partial Differential Equations of Elliptic Type", 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1983. Zbl0562.35001MR737190
  12. [12] P. Hajlasz, Pointwise Hardy inequalities, Proc. Amer. Math. Soc.127 (1999), 417-423. Zbl0911.31005MR1458875
  13. [13] G.H. Hardy, Note on a Theorem of Hilbert, Math. 6 (1920), 314-317. MR1544414JFM47.0207.01
  14. [14] G.H. Hardy, An inequality between integrals, Messenger of Math. 54 (1925), 150-156. JFM51.0192.01
  15. [15] A. Kufner, "Weighted Sobolev Spaces", John Wiley & Sons, 1985. Zbl0567.46009MR802206
  16. [16] P. Lindquist, On the equation div (|∇u| p-2∇u) + λ|u|p-2|u = 0, Proc. Amer. Math. Soc.109 (1990), 157-164. Zbl0714.35029
  17. [17] J.L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177-196. Zbl0668.31002MR946438
  18. [18] M. Marcus - V.J. Mizel - Y. Pinchover, On the best constant for Hardy's inequality in Rn, Trans. Amer. Math. Soc. 350 (1998), 3237-3255. Zbl0917.26016MR1458330
  19. [19] T. Matskewich - P.E. Sobolevskii, The best possible constant in a generalized Hardy's inequality for convex domains in Rn, Nonlinear Anal. 28 (1997), 1601-1610. Zbl0876.46025MR1431208
  20. [20] J Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle, Ann. Scuola Norm. Sup. Pisa Cl. Sci.16 (1962), 305-326. Zbl0112.33101MR163054
  21. [21] B. Opic - A. Kufner, "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman, 1990. Zbl0698.26007MR1069756
  22. [22] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. Zbl0128.09101MR170096
  23. [23] I. Shafrir, On the asymptotic behavior of minimizing sequences for Hardy's inequality, Comm. Contemp. Math.2 (2000), 1-38. Zbl0956.35036MR1759788
  24. [24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 121-150. Zbl0488.35017MR727034
  25. [25] N. Trudinger, On Harnack type inequalities and their applications quasilinear elliptic equations, Comm. Pure Appl. Math.20 (1967), 721-747. Zbl0153.42703MR226198
  26. [26] A. Wannebo, Hardy inequalities, Proc. A.M.S. 109 (1990), 85-95. Zbl0715.26009MR1010807

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.