An eigenvalue problem related to Hardy’s inequality
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 3, page 581-604
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMarcus, Moshe, and Shafrir, Itai. "An eigenvalue problem related to Hardy’s $L^P$ inequality." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 581-604. <http://eudml.org/doc/84419>.
@article{Marcus2000,
author = {Marcus, Moshe, Shafrir, Itai},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {eigenvalue problem; singular elliptic equation; Hardy's inequality; comparison principle},
language = {eng},
number = {3},
pages = {581-604},
publisher = {Scuola normale superiore},
title = {An eigenvalue problem related to Hardy’s $L^P$ inequality},
url = {http://eudml.org/doc/84419},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Marcus, Moshe
AU - Shafrir, Itai
TI - An eigenvalue problem related to Hardy’s $L^P$ inequality
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 581
EP - 604
LA - eng
KW - eigenvalue problem; singular elliptic equation; Hardy's inequality; comparison principle
UR - http://eudml.org/doc/84419
ER -
References
top- [1] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sèr. I-Math.305 (1987), 725-728. Zbl0633.35061MR920052
- [2] A. Ancona, Une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris Sér. I292 (1981), 477-480. Zbl0461.46028MR612540
- [3] A. Ancona, On strong barriers and inequality of Hardy for domains in Rn, J. London Math. Soc.34 (1986), 274-290. Zbl0629.31002MR856511
- [4] W. Allegretto - Y.X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal.32 (1998), 819-830. Zbl0930.35053MR1618334
- [5] H. Brezis - M. Marcus, Hardy's inequality revisited, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 25 (1997), 217-237. Zbl1011.46027MR1655516
- [6] H. Brezis - M. Marcus - I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal.171 (2000), 177-191. Zbl0953.26006MR1742864
- [7] H. Brezis - L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), 55-64. Zbl0593.35045MR820658
- [8] E.B. Davies, The Hardy constant, Quart. J. Math. Oxford46 (1995), 417-431. Zbl0857.26005MR1366614
- [9] E. Di Benedetto, C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983). Zbl0539.35027
- [10] J.I. Diaz - J.E. Saa, Existence et unicité de solutions positives pour certains équations elliptiques quasilinéaires de la première, C. R. Acad. Sci. Paris Sér. I305 (1987), 521-524. Zbl0656.35039MR916325
- [11] D. Gilbarg - N. Trudinger, "Elliptic Partial Differential Equations of Elliptic Type", 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1983. Zbl0562.35001MR737190
- [12] P. Hajlasz, Pointwise Hardy inequalities, Proc. Amer. Math. Soc.127 (1999), 417-423. Zbl0911.31005MR1458875
- [13] G.H. Hardy, Note on a Theorem of Hilbert, Math. 6 (1920), 314-317. MR1544414JFM47.0207.01
- [14] G.H. Hardy, An inequality between integrals, Messenger of Math. 54 (1925), 150-156. JFM51.0192.01
- [15] A. Kufner, "Weighted Sobolev Spaces", John Wiley & Sons, 1985. Zbl0567.46009MR802206
- [16] P. Lindquist, On the equation div (|∇u| p-2∇u) + λ|u|p-2|u = 0, Proc. Amer. Math. Soc.109 (1990), 157-164. Zbl0714.35029
- [17] J.L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177-196. Zbl0668.31002MR946438
- [18] M. Marcus - V.J. Mizel - Y. Pinchover, On the best constant for Hardy's inequality in Rn, Trans. Amer. Math. Soc. 350 (1998), 3237-3255. Zbl0917.26016MR1458330
- [19] T. Matskewich - P.E. Sobolevskii, The best possible constant in a generalized Hardy's inequality for convex domains in Rn, Nonlinear Anal. 28 (1997), 1601-1610. Zbl0876.46025MR1431208
- [20] J Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle, Ann. Scuola Norm. Sup. Pisa Cl. Sci.16 (1962), 305-326. Zbl0112.33101MR163054
- [21] B. Opic - A. Kufner, "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman, 1990. Zbl0698.26007MR1069756
- [22] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. Zbl0128.09101MR170096
- [23] I. Shafrir, On the asymptotic behavior of minimizing sequences for Hardy's inequality, Comm. Contemp. Math.2 (2000), 1-38. Zbl0956.35036MR1759788
- [24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 121-150. Zbl0488.35017MR727034
- [25] N. Trudinger, On Harnack type inequalities and their applications quasilinear elliptic equations, Comm. Pure Appl. Math.20 (1967), 721-747. Zbl0153.42703MR226198
- [26] A. Wannebo, Hardy inequalities, Proc. A.M.S. 109 (1990), 85-95. Zbl0715.26009MR1010807
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.