Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains
Kazuhiro Ishige; Minoru Murata
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 1, page 171-223
- ISSN: 0391-173X
Access Full Article
topHow to cite
topIshige, Kazuhiro, and Murata, Minoru. "Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 171-223. <http://eudml.org/doc/84435>.
@article{Ishige2001,
author = {Ishige, Kazuhiro, Murata, Minoru},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Cauchy problem; nonnegative solutions; uniqueness; parabolic equations},
language = {eng},
number = {1},
pages = {171-223},
publisher = {Scuola normale superiore},
title = {Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains},
url = {http://eudml.org/doc/84435},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Ishige, Kazuhiro
AU - Murata, Minoru
TI - Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 171
EP - 223
LA - eng
KW - Cauchy problem; nonnegative solutions; uniqueness; parabolic equations
UR - http://eudml.org/doc/84435
ER -
References
top- [Ai] H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability of super harmonic functions, Math. Ann.312 (1998), 289-318. Zbl0917.31001MR1671780
- [AM] H. Aikawa - M. Murata, Generalized Cranston-McConnell inequalities and Martin boundaries of unbounded domains, J. Analyse Math.69 (1996), 137-152. Zbl0865.31009MR1428098
- [An1] A. Ancona, On strong barriers and an inequality of Hardy for domains in RN, J. London Math. Soc.34 (1986), 274-290. Zbl0629.31002MR856511
- [An2] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math.125 (1987), 495-536. Zbl0652.31008MR890161
- [An3] A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Analyse Math.72 (1997), 45-92. Zbl0944.58016MR1482989
- [Ara] H. Arai, Degenerate elliptic operators, Hardy spaces and diffusions on strongly pseudoconvex domains, Tohoku Math. J.46 (1994), 469-498. Zbl0823.32002MR1301285
- [AT] A. Ancona - J.C. Taylor, Some remarks on Widder's theorem and uniqueness of isolated singularities for parabolic equations, In: "Partial Differential Equations with Minimal Smoothness and Applications", B. Dahlberg et al. (eds), Springer-Velag, New York, 1992, pp.15-23. Zbl0816.35044MR1155849
- [Aro] D.G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1968), 607-694. Zbl0182.13802MR435594
- [AB1] D.G. Aronson - P. Besala, Uniqueness of solutions of the Cauchy problem for parabolic equations, J. Math. Anal. Appl.13 (1966), 516-526. Zbl0137.29501MR192197
- [AB2] D.G. Aronson - P. Besala, Uniqueness of positive solutions of parabolic equations with unbounded coefficients, Colloq. Math.18 (1967), 126-135. Zbl0157.17404MR219900
- [AS] D.G. Aronson - J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal.25 (1967), 81-122. Zbl0154.12001MR244638
- [Az] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France102 (1974), 193-240. Zbl0293.60071MR356254
- [BM] M. Biroli - U. Mosco, A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl.(4) 169 (1995), 125-181. Zbl0851.31008MR1378473
- [CS1] F. Chiarenza - R. Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) (1983), 139-162. Zbl0573.35052MR772255
- [CS2] F. Chiapenza - R. Serapioni, A Harnack inequalityfordegenerate parabolic equations, Comm. Partial Differential Equations9 (1984), 719-749. Zbl0546.35035MR748366
- [CS3] F. Chiarenza - R. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova73 (1985), 179-190. Zbl0588.35013MR799906
- [CW] S. Chanillo - R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations11 (1986), 1111-1134. Zbl0634.35035MR847996
- [D1] E.B. Davies, L1 properties of second order elliptic operators, Bull. London Math. Soc.17 (1985), 417-436. Zbl0583.35032MR806008
- [D2] E.B. Davies, "Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989. Zbl0699.35006MR990239
- [Dod] J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J.32 (1983), 703-716. Zbl0526.58047MR711862
- [Don] H. Donnelly, Uniqueness of the positive solutions of the heat equation, Proc. Amer. Math. Soc.99 (1987), 353-356. Zbl0615.53034MR870800
- [EK] D. Eidus - S. Kamin, Thefiltration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc.120 (1994), 825-830. Zbl0791.35065MR1169025
- [EG] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [FS] E.B. Fabes - D.W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal.96 (1986), 327-338. Zbl0652.35052MR855753
- [Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math.26 (1974), 1-65. Zbl0289.32012MR350069
- [FOT] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [Gr1] A.A. Grigor'yan, On stochastically complete manifolds, Soviet Math. Dokl.34 (1987), 310-313. Zbl0632.58041MR860324
- [Gr2] A.A. Grigor'yan, The heat equation on noncompact Riemannian manifolds, Math. USSR Sbornik72 (1992), 47-77. Zbl0776.58035MR1098839
- [Gu] A.K. Gushchin, On the uniform stabilization of solutions of the second mixed problem for a parabolic equation, Math. USSR Sbornik47 (1984), 439-498. Zbl0554.35055
- [GW1] C.E. Gutiérrez- R.L. Wheeden, Mean value and Harnack inequalities for degenerate parabolic equations, Colloquium Math., dedicated to A. ZygmundLX/LXI (1990), 157-194. Zbl0785.35057MR1096367
- [GW2] C.E. Gutiérrez - R.L. Wheeden, Harnack's inequality for degenerate parabolic equations, Comm. Partial Differential Equations16 (1991), 745-770. Zbl0746.35007MR1113105
- [I] K. Ishige, On the behavior of the solutions of degenerate parabolic equations, Nagoya Math. J.155 (1999), 1-26. Zbl0932.35131MR1711391
- [IKO] A.M. Il'n - A.S. Kalashnikov - O.A. Oleinik, Linear equations of the second order of parabolic type., Russian Math. Surveys17 (1972), 1-144.
- [IM] K. Ishige - M. Murata, An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations, Math. Z.227 (1998), 313-335. Zbl0893.35042MR1609065
- [Kh] R.Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theory Prob. Appl.5 (1960), 179-196. Zbl0093.14902MR133871
- [Kl] P.F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J.27 (1978), 275-282. Zbl0422.53032MR463506
- [KT] A. Koranyi - J.C. Taylor, Minimal solutions of the heat equations and uniqueness of the positive Cauchy problem on homogeneous spaces, Proc. Amer. Math. Soc.94 (1985), 273-278. Zbl0577.35047MR784178
- [LM] J.L. Lions — E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications", Vol.I, Springer-Verlag, Berlin-Heidelberg -New York, 1972. Zbl0223.35039MR350177
- [LP] V. Lin - Y. Pinchover, Manifolds with group actions and elliptic operators, Memoirs Amer. Math. Soc.112 (1994), no. 540. Zbl0816.58041MR1230774
- [LY] P. Li - S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math.156 (1986), 153-201. Zbl0611.58045MR834612
- [Mo] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101-134. Zbl0149.06902MR159139
- [M1] M. Murata, Uniform restricted parabolic Harnack inequality, separation principle, and ultracontractivity for parabolic equations, In: "Functional Analysis and Related Topics", 1991, Lecture Notes in Math. Vol. 1540, H. Komatsu (ed.), Springer-Verlag, Berlin, 1993, pp. 277-285. Zbl0793.35046MR1225823
- [M2] M. Murata, Non-uniqueness of the positive Cauchy problem for parabolic equations, J. Differential Equations123 (1995), 343-387. Zbl0843.35036MR1362880
- [M3] M. Murata, Sufficient condition for non-uniqueness of the positive Cauchy problem for parabolic equations, In: "Spectral and Scattering Theory and Applications", Advanced Studies in Pure Math., Vol. 23, Kinokuniya, Tokyo, 1994, pp. 275-282. Zbl0806.35054MR1275409
- [M4] M. Murata, Uniqueness and non-uniqueness of the positive Cauchy problem for the heat equation on Riemannian manifolds, Proc. Amer. Math. Soc.123 (1995), 1923-1932. Zbl0829.58042MR1242097
- [M5] M. Murata, Non-uniqueness of the positive Dirichlet problem for parabolic equations in cylinders, J. Func. Anal.135 (1996), 456-487. Zbl0846.35055MR1370610
- [M6] M. Murata, Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math.102 (1997), 29-60. Zbl0891.35013MR1489100
- [PS] M.A. Perel'muter - Yu A. Semenov, Elliptic operators preserving probability, Theory Prob. Appl.32 (1987), 718-721. Zbl0715.35025MR927262
- [Pinc] Y. Pinchover, On uniqueness and nonuniqueness of positive Cauchy problem forparabolic equations with unbounded coefficients, Math. Z.233 (1996), 569-586. Zbl0869.35010MR1421956
- [Pins] R.G. Pinsky, "Positive Harmonic Functions and Diffusion", Cambridge Univ. Press, Cambridge, 1995. Zbl0858.31001MR1326606
- [Sa1] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom.36 (1992), 417-450. Zbl0735.58032MR1180389
- [Sa2] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequality, Duke Math. J.2 (1992), 27-38. Zbl0769.58054MR1150597
- [Sa3] L. Saloff-Coste, Parabolic Harnacck inequality for divergence form second order differential operators, Potential Anal.4 (1995), 429-467. Zbl0840.31006MR1354894
- [Stu1] K. Th. Sturm, Analysis on local Dirichlet spaces-I. Recurrence, conservativeness and LP -Liouville properties, J. Reine Angew. Math.456 (1994), 173-196. Zbl0806.53041MR1301456
- [Stu2] K. Th.STURM, Analysis on local Dirichlet spaces-II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math.32 (1995), 275-312. Zbl0854.35015MR1355744
- [Stu3] K. Th. Sturm, Analysis on local Dirichlet spaces-III. Poincaré and parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), 273-297. Zbl0854.35016MR1387522
- [Stu4] K. Th. Sturm, On the geometry defined by Dirichletforms, In: "Seminar on Stochastic Analysis, Random Fields and Applications", E. Bolthansen et al. (eds.) (Progress in Prob. vol. 36), Birkhäuser, 1995, pp. 231-242. Zbl0834.58039MR1360279
- [T] Täcklind, Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique, Nova Acta Regiae Soc. Scien. Upsaliensis, Ser. IV10 (1936), 1-57. Zbl0014.02204JFM62.1186.01
- [W] D.V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc.55 (1944), 85-95. Zbl0061.22303MR9795
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.