Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains

Kazuhiro Ishige; Minoru Murata

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 171-223
  • ISSN: 0391-173X

How to cite

top

Ishige, Kazuhiro, and Murata, Minoru. "Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 171-223. <http://eudml.org/doc/84435>.

@article{Ishige2001,
author = {Ishige, Kazuhiro, Murata, Minoru},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Cauchy problem; nonnegative solutions; uniqueness; parabolic equations},
language = {eng},
number = {1},
pages = {171-223},
publisher = {Scuola normale superiore},
title = {Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains},
url = {http://eudml.org/doc/84435},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Ishige, Kazuhiro
AU - Murata, Minoru
TI - Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 171
EP - 223
LA - eng
KW - Cauchy problem; nonnegative solutions; uniqueness; parabolic equations
UR - http://eudml.org/doc/84435
ER -

References

top
  1. [Ai] H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability of super harmonic functions, Math. Ann.312 (1998), 289-318. Zbl0917.31001MR1671780
  2. [AM] H. Aikawa - M. Murata, Generalized Cranston-McConnell inequalities and Martin boundaries of unbounded domains, J. Analyse Math.69 (1996), 137-152. Zbl0865.31009MR1428098
  3. [An1] A. Ancona, On strong barriers and an inequality of Hardy for domains in RN, J. London Math. Soc.34 (1986), 274-290. Zbl0629.31002MR856511
  4. [An2] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math.125 (1987), 495-536. Zbl0652.31008MR890161
  5. [An3] A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Analyse Math.72 (1997), 45-92. Zbl0944.58016MR1482989
  6. [Ara] H. Arai, Degenerate elliptic operators, Hardy spaces and diffusions on strongly pseudoconvex domains, Tohoku Math. J.46 (1994), 469-498. Zbl0823.32002MR1301285
  7. [AT] A. Ancona - J.C. Taylor, Some remarks on Widder's theorem and uniqueness of isolated singularities for parabolic equations, In: "Partial Differential Equations with Minimal Smoothness and Applications", B. Dahlberg et al. (eds), Springer-Velag, New York, 1992, pp.15-23. Zbl0816.35044MR1155849
  8. [Aro] D.G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1968), 607-694. Zbl0182.13802MR435594
  9. [AB1] D.G. Aronson - P. Besala, Uniqueness of solutions of the Cauchy problem for parabolic equations, J. Math. Anal. Appl.13 (1966), 516-526. Zbl0137.29501MR192197
  10. [AB2] D.G. Aronson - P. Besala, Uniqueness of positive solutions of parabolic equations with unbounded coefficients, Colloq. Math.18 (1967), 126-135. Zbl0157.17404MR219900
  11. [AS] D.G. Aronson - J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal.25 (1967), 81-122. Zbl0154.12001MR244638
  12. [Az] R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France102 (1974), 193-240. Zbl0293.60071MR356254
  13. [BM] M. Biroli - U. Mosco, A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl.(4) 169 (1995), 125-181. Zbl0851.31008MR1378473
  14. [CS1] F. Chiarenza - R. Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) (1983), 139-162. Zbl0573.35052MR772255
  15. [CS2] F. Chiapenza - R. Serapioni, A Harnack inequalityfordegenerate parabolic equations, Comm. Partial Differential Equations9 (1984), 719-749. Zbl0546.35035MR748366
  16. [CS3] F. Chiarenza - R. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova73 (1985), 179-190. Zbl0588.35013MR799906
  17. [CW] S. Chanillo - R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations11 (1986), 1111-1134. Zbl0634.35035MR847996
  18. [D1] E.B. Davies, L1 properties of second order elliptic operators, Bull. London Math. Soc.17 (1985), 417-436. Zbl0583.35032MR806008
  19. [D2] E.B. Davies, "Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989. Zbl0699.35006MR990239
  20. [Dod] J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J.32 (1983), 703-716. Zbl0526.58047MR711862
  21. [Don] H. Donnelly, Uniqueness of the positive solutions of the heat equation, Proc. Amer. Math. Soc.99 (1987), 353-356. Zbl0615.53034MR870800
  22. [EK] D. Eidus - S. Kamin, Thefiltration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc.120 (1994), 825-830. Zbl0791.35065MR1169025
  23. [EG] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  24. [FS] E.B. Fabes - D.W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal.96 (1986), 327-338. Zbl0652.35052MR855753
  25. [Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math.26 (1974), 1-65. Zbl0289.32012MR350069
  26. [FOT] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  27. [Gr1] A.A. Grigor'yan, On stochastically complete manifolds, Soviet Math. Dokl.34 (1987), 310-313. Zbl0632.58041MR860324
  28. [Gr2] A.A. Grigor'yan, The heat equation on noncompact Riemannian manifolds, Math. USSR Sbornik72 (1992), 47-77. Zbl0776.58035MR1098839
  29. [Gu] A.K. Gushchin, On the uniform stabilization of solutions of the second mixed problem for a parabolic equation, Math. USSR Sbornik47 (1984), 439-498. Zbl0554.35055
  30. [GW1] C.E. Gutiérrez- R.L. Wheeden, Mean value and Harnack inequalities for degenerate parabolic equations, Colloquium Math., dedicated to A. ZygmundLX/LXI (1990), 157-194. Zbl0785.35057MR1096367
  31. [GW2] C.E. Gutiérrez - R.L. Wheeden, Harnack's inequality for degenerate parabolic equations, Comm. Partial Differential Equations16 (1991), 745-770. Zbl0746.35007MR1113105
  32. [I] K. Ishige, On the behavior of the solutions of degenerate parabolic equations, Nagoya Math. J.155 (1999), 1-26. Zbl0932.35131MR1711391
  33. [IKO] A.M. Il'n - A.S. Kalashnikov - O.A. Oleinik, Linear equations of the second order of parabolic type., Russian Math. Surveys17 (1972), 1-144. 
  34. [IM] K. Ishige - M. Murata, An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations, Math. Z.227 (1998), 313-335. Zbl0893.35042MR1609065
  35. [Kh] R.Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theory Prob. Appl.5 (1960), 179-196. Zbl0093.14902MR133871
  36. [Kl] P.F. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J.27 (1978), 275-282. Zbl0422.53032MR463506
  37. [KT] A. Koranyi - J.C. Taylor, Minimal solutions of the heat equations and uniqueness of the positive Cauchy problem on homogeneous spaces, Proc. Amer. Math. Soc.94 (1985), 273-278. Zbl0577.35047MR784178
  38. [LM] J.L. Lions — E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications", Vol.I, Springer-Verlag, Berlin-Heidelberg -New York, 1972. Zbl0223.35039MR350177
  39. [LP] V. Lin - Y. Pinchover, Manifolds with group actions and elliptic operators, Memoirs Amer. Math. Soc.112 (1994), no. 540. Zbl0816.58041MR1230774
  40. [LY] P. Li - S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math.156 (1986), 153-201. Zbl0611.58045MR834612
  41. [Mo] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101-134. Zbl0149.06902MR159139
  42. [M1] M. Murata, Uniform restricted parabolic Harnack inequality, separation principle, and ultracontractivity for parabolic equations, In: "Functional Analysis and Related Topics", 1991, Lecture Notes in Math. Vol. 1540, H. Komatsu (ed.), Springer-Verlag, Berlin, 1993, pp. 277-285. Zbl0793.35046MR1225823
  43. [M2] M. Murata, Non-uniqueness of the positive Cauchy problem for parabolic equations, J. Differential Equations123 (1995), 343-387. Zbl0843.35036MR1362880
  44. [M3] M. Murata, Sufficient condition for non-uniqueness of the positive Cauchy problem for parabolic equations, In: "Spectral and Scattering Theory and Applications", Advanced Studies in Pure Math., Vol. 23, Kinokuniya, Tokyo, 1994, pp. 275-282. Zbl0806.35054MR1275409
  45. [M4] M. Murata, Uniqueness and non-uniqueness of the positive Cauchy problem for the heat equation on Riemannian manifolds, Proc. Amer. Math. Soc.123 (1995), 1923-1932. Zbl0829.58042MR1242097
  46. [M5] M. Murata, Non-uniqueness of the positive Dirichlet problem for parabolic equations in cylinders, J. Func. Anal.135 (1996), 456-487. Zbl0846.35055MR1370610
  47. [M6] M. Murata, Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math.102 (1997), 29-60. Zbl0891.35013MR1489100
  48. [PS] M.A. Perel'muter - Yu A. Semenov, Elliptic operators preserving probability, Theory Prob. Appl.32 (1987), 718-721. Zbl0715.35025MR927262
  49. [Pinc] Y. Pinchover, On uniqueness and nonuniqueness of positive Cauchy problem forparabolic equations with unbounded coefficients, Math. Z.233 (1996), 569-586. Zbl0869.35010MR1421956
  50. [Pins] R.G. Pinsky, "Positive Harmonic Functions and Diffusion", Cambridge Univ. Press, Cambridge, 1995. Zbl0858.31001MR1326606
  51. [Sa1] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom.36 (1992), 417-450. Zbl0735.58032MR1180389
  52. [Sa2] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequality, Duke Math. J.2 (1992), 27-38. Zbl0769.58054MR1150597
  53. [Sa3] L. Saloff-Coste, Parabolic Harnacck inequality for divergence form second order differential operators, Potential Anal.4 (1995), 429-467. Zbl0840.31006MR1354894
  54. [Stu1] K. Th. Sturm, Analysis on local Dirichlet spaces-I. Recurrence, conservativeness and LP -Liouville properties, J. Reine Angew. Math.456 (1994), 173-196. Zbl0806.53041MR1301456
  55. [Stu2] K. Th.STURM, Analysis on local Dirichlet spaces-II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math.32 (1995), 275-312. Zbl0854.35015MR1355744
  56. [Stu3] K. Th. Sturm, Analysis on local Dirichlet spaces-III. Poincaré and parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), 273-297. Zbl0854.35016MR1387522
  57. [Stu4] K. Th. Sturm, On the geometry defined by Dirichletforms, In: "Seminar on Stochastic Analysis, Random Fields and Applications", E. Bolthansen et al. (eds.) (Progress in Prob. vol. 36), Birkhäuser, 1995, pp. 231-242. Zbl0834.58039MR1360279
  58. [T] Täcklind, Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique, Nova Acta Regiae Soc. Scien. Upsaliensis, Ser. IV10 (1936), 1-57. Zbl0014.02204JFM62.1186.01
  59. [W] D.V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc.55 (1944), 85-95. Zbl0061.22303MR9795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.