L P -uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients

Vitali Liskevich; Michael Röckner; Zeev Sobol; Oleksiy Us

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 2, page 285-309
  • ISSN: 0391-173X

How to cite

top

Liskevich, Vitali, et al. "$L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 285-309. <http://eudml.org/doc/84443>.

@article{Liskevich2001,
author = {Liskevich, Vitali, Röckner, Michael, Sobol, Zeev, Us, Oleksiy},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {285-309},
publisher = {Scuola normale superiore},
title = {$L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients},
url = {http://eudml.org/doc/84443},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Liskevich, Vitali
AU - Röckner, Michael
AU - Sobol, Zeev
AU - Us, Oleksiy
TI - $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 285
EP - 309
LA - eng
UR - http://eudml.org/doc/84443
ER -

References

top
  1. [1] S. Albeverio - Y U.G. Kondratiev - M. Röckner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal.1 (1992), 307-317. Zbl0808.47021MR1245233
  2. [2] S. Albeverio - Yu G. Kondratiev - M. Röckner, Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal.2 (1993), 195-198. Zbl0808.47022MR1246751
  3. [3] S. Albeverio - Yu. G. Kondratiev - M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1995), 102-138. Zbl0820.60042MR1317712
  4. [4] G. Da Prato - L. Tubaro, Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization, Prob. Th. Rel. Fields118 (2000), 131-145. Zbl0971.47019MR1785456
  5. [5] A. Eberle, "Uniqueness and non-uniqueness of singular diffusion operator", Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1999. Zbl0957.60002MR1734956
  6. [6] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet forms and symmetric Markov processes", de Gruyter, Berlin- New York, 1994. Zbl0838.31001MR1303354
  7. [7] Yu G. Kondratiev - T.V. Tsikalenko, Dirichlet operators and associated differential equations, Selecta Mathematica Sovetica10 (1991), 345-397. Zbl0755.35144
  8. [8] V.A. Liskevich - M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 27 (1998), 69-91. Zbl0953.60056MR1658889
  9. [9] V.A. Liskevich - M. Röckner - Z. Sobol, Dirichlet operators with variable coefficients in LP spaces of functions of infinitely many variables, Infinite Dim. Anal., Quantum Prob. and Related Topics, No.4, 2 (1999), 487-502. Zbl1043.47507MR1810809
  10. [10] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a-priori estimates and uniqueness problem, J. Funct. Anal.109 (1992) 199-213. Zbl0788.47041MR1183610
  11. [11] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Basel-Boston- Berlin, 1995. Zbl0816.35001MR1329547
  12. [12] Z.M. Ma - M. Röckner, "Introduction to the theory of (non-symmetric) Dirichlet forms", Springer-Verlag, Berlin-Heidelberg -New-York-London- Paris-Tokio, 1992. Zbl0826.31001
  13. [13] R. NAGEL (editor), "One-parameter Semigroups of Positive Operators", Lecture Notes in Mathematics, vol. 1184, Sringer, Berlin, 1986. Zbl0585.47030
  14. [14] L. Schwartz, "Radon measures on arbitrary topological space and cylindrical measures", Oxford University Press, London, 1973. Zbl0298.28001MR426084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.