Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization
Vitali Liskevich; Michael Röckner
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 1, page 69-91
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLiskevich, Vitali, and Röckner, Michael. "Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 69-91. <http://eudml.org/doc/84355>.
@article{Liskevich1998,
author = {Liskevich, Vitali, Röckner, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Dirichlet forms; Dirichlet operators; strong uniqueness; Markov uniqueness},
language = {eng},
number = {1},
pages = {69-91},
publisher = {Scuola normale superiore},
title = {Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization},
url = {http://eudml.org/doc/84355},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Liskevich, Vitali
AU - Röckner, Michael
TI - Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 69
EP - 91
LA - eng
KW - Dirichlet forms; Dirichlet operators; strong uniqueness; Markov uniqueness
UR - http://eudml.org/doc/84355
ER -
References
top- [1] S. Albeverio - Y U.G. Kondratiev - M. Rockner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal.1 (1992), 307-317. Zbl0808.47021MR1245233
- [2] S. Albeverio - Y.G. Kondratiev - M. Röckner, Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal.2 (1993), 195-198. Zbl0808.47022MR1246751
- [3] S. Albeverio - Y U.G. Kondratiev - M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1995), 102-138. Zbl0820.60042MR1317712
- [4] S. Albeverio - Yu G. Kondratiev - M. Röckner, Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states. SFB-343-Preprint 1996, To appear in: J. Funct. Anal. Zbl0892.60008MR1472365
- [5] S. Albeverio - M. Röckner, Dirichlet forms on topological vector spaces-construction of an associated diffusion process, Probab. Theory Related Fields83 (1989), 405-434. Zbl0661.60094MR1017404
- [6] S. Albeverio - M. Röckner, "Dirichlet forms, quantum fields and stochastic quantization. Stochastic analysis, path integration and dynamics", Research Notes in Mathematics, vol. 200, 1-21. Editors: K. D. Elworthy, J. C. Zambrini. Harlow: Longman1989. Zbl0691.60044MR1020060
- [7] S. Albeverio - M. Röckner, Classical Dirichletforms on topological spaces-Closability and Cameron-Martin formula, J. Funct. Anal.88 (1990), 395-436. Zbl0737.46036MR1038449
- [8] S. Albeverio - M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields89 (1991), 347-386. Zbl0725.60055MR1113223
- [9] S. Albeverio - M. Röckner, Dirichlet form methods for uniqueness of martingale problems and applications, in: Stochastic Analysis. Proceedings of Symposia in Pure Mathematics Vol. 57, 513-528. Editors: M. C. Cranston, M. A. Pinsky. Am. Math. Soc.: Providence, Rhode Island1995. Zbl0824.31005MR1335494
- [10] S. Albeverio - M. Röckner - T.S. Zhang, Girsanov transform for symmetric diffusions with infinite dimensional state space., Ann. Probab.21 (1993), 961-978. Zbl0776.60093MR1217575
- [11] S. Albeverio - M. Röckner - T.S. Zhang, Markov uniqueness and its applications to martingale problems, stochastic differential equations and stochastic quantization, C.R. Math. Rep. Acad. Sci. CanadaXV (1993), 1-6. Zbl0767.31009MR1214208
- [12] S. Albeverio - M. Röckner - T.S. Zhang, Markov uniqueness for a class of infinite dimensional Dirichlet operators, in: Stochastic Processes and Optimal Control. Stochastic Monographs 7 (eds. H. J. Engelbert et al.), pp. 1-26, Gordon&Breach, 1993. Zbl0827.31007MR1268239
- [13] Yu. M. Berezanskii - Yu. G. Kondratiev, "Spectral methods in infinite dimensional analysis", Naukova Dumka, Kiev, 1988. MR978630
- [14] V.I. Bogachev - N. Krylov - M. Röckner, Elliptic regularity and essential self-adjointness of Dirichlet operators on Rn, SFB-343 Preprint (1996). MR1391637
- [15] V.S. Borkar - R.T. Chari - S.K. Mitter, Stochastic quantization offield theory in finite and infinite volume, J. Funct. Anal.81 (1988), 184-206. Zbl0657.60084MR967896
- [16] N. Bouleau - F. Hirsch, "Dirichlet Forms and Analysis on Wiener Space", de Gruyter, Berlin-New York, 1991. Zbl0748.60046MR1133391
- [17] E.B. Davies, "Heat Kernels and Spectral Theory", Cambridge University Press, Cambridge-New York- New Rochelle-Melbourne-Sydney, 1989. Zbl0699.35006MR990239
- [18] G. Da Prato - L. Tubaro, Introduction to stochastic quantization, Preprint (1996). Zbl0853.60052
- [19] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators, Doktorarbeit, Bielefeld (1997). Zbl0902.35063
- [20] M. Fukushima - Y. Oshima - M. Takeda, "Dirichlet Forms and Symmetric Markov Processes", de Gruyter, Berlin- New York,1994. Zbl0838.31001MR1303354
- [21] D. Gatarek - B. Goldys, Existence, uniqueness and ergodicity for stochastic quantization equations, Preprint (1995). MR1391475
- [22] J. Glimm - A. Jaffe, "Quantum Physics: A Functional Integral Point of View", New York/Heidelberg/Berlin: Springer1996. Zbl0461.46051MR887102
- [23] Y.Z. Hu - G. Kallianpur, Exponential integrability and applications to stochastic quantization, Preprint (1996). Zbl0903.60046MR1610803
- [24] G. Jona-Lasinio - P.K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys.101 (1985), 406-436. Zbl0588.60054MR815192
- [25] G. Jona-Lasinio - P.K. Mitter, Large deviation estimates in the stochastic quantization of Φ42, Comm. Math. Phys.130 (1990), 111-121. Zbl0703.60095
- [26] G. Jona-Lasinio - R. Seneor, On a class of stochastic reaction-diffusion equations in two space dimensions, J. Phys.A24 (1991), 4123-4128. Zbl0745.60058MR1126653
- [27] N.V. Krylov, "Lectures on elliptic and parabolic equations in Hölder spaces", Graduate Studies in Mathematics, Vol. 12. American Mathematical Society, 1996. Zbl0865.35001MR1406091
- [28] J.L. Lions - E. Magenes, Non-homogeneous boundary value problems and applications, in: Grundlehren Math. Wiss., Berlin: Springer, 1972. Zbl0223.35039
- [29] V.A. Liskevich - Yu. A. Semenov, Some problems on Markov semigroups, in: Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras Mathematical topics Advances in partial differential equations11, pp. 163-217 (eds M.Demuth at al.) Akademie Verlag, Berlin, 1996. Zbl0854.47027MR1409835
- [30] V.A. Liskevich, Smoothness estimates and uniqueness for the Dirichlet operator, in: Operator Theory: Advances and Applications70 (1994), 149-152. Zbl0812.47051MR1309017
- [31] V.A. Liskevich - Yu. A. Semenov, Dirichlet operators: a priori estimates and the uniqueness problem, J. Funct. Anal.109 (1992), 199-213. Zbl0788.47041MR1183610
- [32] Z.-M. Ma - M. Röckner, "Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg -New York- London- Paris-Tokyo, 1992. Zbl0826.31001MR1214375
- [33] R. Mikulevicius - B.I. Rozowski, Martingale problems for stochastic PDE's. Preprint (1997), To appear in: Stochastic partial differential equations: Six Perspectives. Editors: R. Carmona, B. L. Rozowski. AMS Series Monographs and Reviews. Zbl0938.60047
- [34] P.K. Mitter, Stochastic approach to Euclidean field theory (Stochastic quantization), in: New perspectives in Quantum Field Theory. Editors: J. Abad, M. Asorey, A. Cruz. Singapore: World Scientific, 1986. MR853370
- [35] R. NAGEL (editor), "One-Parameter Semigroups of Positive Operators", Lecture Notes in mathematics1184, Springer-Verlag, Berlin-Heidelberg- New York, 1986. Zbl0585.47030MR839450
- [36] E. Nelson, The free Markov field, J. Funct. Anal.12 (1973), 211-227. Zbl0273.60079MR343816
- [37] G. Parisi - Y.S. Wu, Perturbation theory without gauge fixing, Scienta Sinica24 (1981), 383-496. MR626795
- [38] M. Reed - B. Simon, "Methods of Modem Mathematical Physics IV", Analysis of Operators. Orlando, FL: Academic Press, 1978. Zbl0401.47001
- [39] M. Röckner, Specifications and Martin boundaries for P (ϕ)2-random fields, Comm. Math. Phys.106 (1986), 105-135. Zbl0614.60068
- [40] M. Röckner - T.-S. Zhang, On uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal.105 (1992), 187-231. Zbl0779.35028MR1156676
- [41] M. Röckner - T.-S. Zhang, Uniqueness of generalized Schrödinger operators and applications II, J. Funct. Anal.119 (1994), 455-467. Zbl0799.35053MR1261099
- [42] M. Röckner - T.S. Zhang, Finite dimensional approximation of diffusion processes on infinite dimensional state spaces, Stochastics Stochastics Rep.57 (1996), 37-55. Zbl0885.60066MR1407946
- [43] I. Shigekawa, An example of regular (r, p)-capacity and essential self-adjointness of a diffusion operator in infinite dimensions, J. Math. Kyoto Univ.35 (1995), 639-651. Zbl0855.31005MR1365253
- [44] B. Simon, "The P(ϕ)2-Euclidean (Quantum) Field Theory", Princeton, NJ: Princeton University Press, 1974. Zbl1175.81146
- [45] W. Stannat, (Non-symmetric) Dirichlet operators on L1: existence, uniquness and associated Markov processes, SFB-343-Bielefeld Preprint (1997).
- [46] N. Wielens, On the essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal.61 (1985), 98-115. Zbl0564.47010
- [47] J.A. Yan, "Generalizations of Gross' and Minlos' theorems", in: Séminaire de Probabilités XXII, (J. Azema et. al.), 395-404, Lect. Notes in Math. 1372. Berlin: Springer, 1989. Zbl0731.60005MR1022927
Citations in EuDML Documents
top- Vitali Liskevich, Michael Röckner, Zeev Sobol, Oleksiy Us, -uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients
- Giuseppe Da Prato, Arnaud Debussche, Luciano Tubaro, Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
- Giuseppe Da Prato, Luciano Tubaro, Some results about dissipativity of Kolmogorov operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.