Nonlinear stability of a quasi-static Stefan problem with surface tension : a continuation approach
Avner Friedman; Fernando Reitich
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 2, page 341-403
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFriedman, Avner, and Reitich, Fernando. "Nonlinear stability of a quasi-static Stefan problem with surface tension : a continuation approach." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 341-403. <http://eudml.org/doc/84445>.
@article{Friedman2001,
author = {Friedman, Avner, Reitich, Fernando},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {341-403},
publisher = {Scuola normale superiore},
title = {Nonlinear stability of a quasi-static Stefan problem with surface tension : a continuation approach},
url = {http://eudml.org/doc/84445},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Friedman, Avner
AU - Reitich, Fernando
TI - Nonlinear stability of a quasi-static Stefan problem with surface tension : a continuation approach
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 341
EP - 403
LA - eng
UR - http://eudml.org/doc/84445
ER -
References
top- [1] R.A. Adams, "Sobolev Spaces", Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] B.V. Bazalii, Stefan problem for the Laplace equation with regard for the curvature of the free boundary, Ukrainian Math. J.49 (1997), 1465-1484. Zbl0894.35133MR1672855
- [3] X. Chen, The Hele-Shaw problem and area-preserving curve-shortening motions, Arch. Rational Mech. Anal. 123 (1993), 117-151. Zbl0780.35117MR1219420
- [4] X. Chen - J. Hong - F. Yi, Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem, Comm. Partial Differential Equations21 (1993), 1705-1727. Zbl0884.35177MR1421209
- [5] X. Chen - F. Reitich, Local existence and uniqueness of solutions of Stefan problem with surface tension and kinetic undemooling, J. Math. Anal. Appl.164 (1992), 350-362. Zbl0761.35113MR1151039
- [6] P. Constantin - L. Kadanoff, Dynamics of a complex interface, Physica D47 (1991), 450-460. Zbl0713.76107MR1098262
- [7] P. Constantin - M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity6 (1993), 393-415. Zbl0808.35104MR1223740
- [8] J. Duchon - R. Robert, Evolution d'une interface par capillarité et diffusion de volume I. Existence locale en temps, Ann. Inst. H. Poincaré, Anal. non Linéaire1 (1984) 361-378. Zbl0572.35051MR779874
- [9] J. Escher - G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal.28 (1997), 1028-1047. Zbl0888.35142MR1466667
- [10] J. Esher - G. Simonett, A center manifold analysis for the Mullins-Sekerka model, J. Differential Equations143 (1998), 267-292. Zbl0896.35142MR1607952
- [11] A. Friedman - F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth, Trans. Amer. Math. Soc.353 (2000), 1587-1634. Zbl0983.35019MR1806728
- [12] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Verlag, New York, 1983. Zbl0562.35001MR737190
- [ 13] S. Luckhaus, Solutions for the two-phase Stefan problem with Gibbs-Thomson law for the melting temperature, European J. Appl. Math.1 (1990), 101-111. Zbl0734.35159MR1117346
- [14] C. Müller, "Spherical Harmonics", Springer-Verlag, Berlin, 1966. Zbl0138.05101MR199449
- [15] E. Radkevitch, The Gibbs-Thomson correction and conditions for the classical solution of the modified Stefan problem, Soviet Math. Doklaly43 (1991), 274-278. Zbl0782.35087MR1122261
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.