Perturbation theorems for maximal L p -regularity

Peer Christian Kunstmann; Lutz Weis

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 2, page 415-435
  • ISSN: 0391-173X

How to cite

top

Kunstmann, Peer Christian, and Weis, Lutz. "Perturbation theorems for maximal $L_p$-regularity." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 415-435. <http://eudml.org/doc/84447>.

@article{Kunstmann2001,
author = {Kunstmann, Peer Christian, Weis, Lutz},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {sectorial operators; perturbations; elliptic operators},
language = {eng},
number = {2},
pages = {415-435},
publisher = {Scuola normale superiore},
title = {Perturbation theorems for maximal $L_p$-regularity},
url = {http://eudml.org/doc/84447},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Kunstmann, Peer Christian
AU - Weis, Lutz
TI - Perturbation theorems for maximal $L_p$-regularity
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 415
EP - 435
LA - eng
KW - sectorial operators; perturbations; elliptic operators
UR - http://eudml.org/doc/84447
ER -

References

top
  1. [1] H. Amann, "Linear and quasilinear parabolic problems", Vol. 1: Abstract linear theory, Birkhaeuser, Basel, 1995. Zbl0819.35001MR1345385
  2. [2] H. Amann - M. Hieber - G. Simonett, Bounded H∞-calculus for elliptic operators, Differential Integral Equations7 (1994), 613-653. Zbl0799.35060
  3. [3] PH. Clément - S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl.3 (1994), 17-32. Zbl0811.35040MR1287921
  4. [4] PH. Clément - B. De Pagter - F.A. Sukochev - H. Witvliet, Schauder Decomposition and Multiplier Theorems, Studia Math. 138 (2000), 135-163. Zbl0955.46004MR1749077
  5. [5] PH. Clément - J. Prüss, An operator-valued transference principle and maximal regularity on vector-valued L p-spaces, in Proc. 6th Int. Conf.on Evolution Equations, Bad Herrenalb, 1998; Marcel Dekker2001, 67-87. Zbl0988.35100MR1816437
  6. [6] E.B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal.132 (1995), 141-169. Zbl0839.35034MR1346221
  7. [7] E.B. Davies, Limits on Lp regularity of self-adjoint elliptic operators, J. Differential Equations135 (1997), 83-102. Zbl0871.35020MR1434916
  8. [8] G. Dore, Maximal regularity in L p-spaces for an abstract Cauchy problem, to appear in Adv. Differential Equations. Zbl0993.34058MR1734544
  9. [9] X.T. Duong - G. Simonett, H∞-calculus for elliptic operators with nonsmooth coefficients, Differential Integral Equations10 (1997), 201-217. Zbl0892.47017
  10. [10] K.-J. Engel - R. Nagel, "One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics 194", Springer, Berlin, 2000. Zbl0952.47036MR1721989
  11. [11] M. Hieber - J. Prüss, Heat kernels and maximal Lp-L q estimatesforparabolic evolution equations, Commun. Partial Differerential Equations22 (1997), 1647-1669. Zbl0886.35030MR1469585
  12. [12] L. Hörmander, "The Analysis of Linear Partial Differential Operators", Vol. III, Springer, 1985. Zbl0601.35001
  13. [ 13] P.C. Kunstmann, Maximal L p-regularity for second order elliptic operators with uniformly continuous coefficients on domains, submitted. Zbl1230.35033
  14. [14] D. Lamberton, Equations d'évolution linéaires associées a des semi-groupes de contractions dans les espaces LP, J. Funct. Anal. 72 (1987), 252-262. Zbl0621.47039MR886813
  15. [15] V.A. Liskevich, On C0-semigroups generated by elliptic second order differential expressions on Lp-spaces, Differential Integral Equations9 (1996), 811-826. Zbl0852.47018MR1401439
  16. [16] V.A. Liskevich - Yu. A. Semenov, Some problems on Markov semigroups, in Demuth, Michael (ed.) et al., Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, Berlin, Akademie Verlag, (1996), 163-217. Zbl0854.47027MR1409835
  17. [17] V.A. Liskevich - H. Vogt, On Lp-spectra and essential spectra of second order elliptic operators, Proc. London Math. Soc. (3) 80 (2000), 590-610. Zbl1053.35114MR1744777
  18. [18] V.G. Maz'ya - T.O. Shaposhnikova, "Theory of multipliers in spaces of differentiable functions", Pitman, Boston, London, Melbourne, 1985. Zbl0645.46031
  19. [19] J. Prüss - H. Sohr, Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J.23 (1993), 161-192. Zbl0790.35023MR1211773
  20. [20] M. Reed - B. Simon, "Methods of modem mathematical physics II", Academic Press, New York, San Francisco, London, 1975. Zbl0308.47002MR493420
  21. [21] R. Seeley, Interpolation in Lp with boundary conditions, Studia Math.44 (1972), 47-60. Zbl0237.46041MR315432
  22. [22] L. Weis, Operator-valued Fourier Multiplier Theorems and Maximal Lp-Regularity, to appear in Math. Ann. Zbl0989.47025MR1825406
  23. [23] L. Weis, A new approach to maximal Lp-regularity, in Proc. 6th Int. Conf. on Evolution Equations, Bad Herrenalb, 1998; Marcel Dekker2001, 195-214. Zbl0981.35030MR1818002
  24. [24] A. Yagi, Applications of the purely imaginary powers of operators in Hilbert spaces, J. Funct. Anal.73 (1987), 216-231. Zbl0621.47024MR890664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.