A generalization of the sizes of differential equations and its applications to -function theory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 2, page 465-497
- ISSN: 0391-173X
Access Full Article
topHow to cite
topNagata, Makoto. "A generalization of the sizes of differential equations and its applications to $G$-function theory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 465-497. <http://eudml.org/doc/84449>.
@article{Nagata2001,
author = {Nagata, Makoto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {size of a matrix; size of a solution; -function; height},
language = {eng},
number = {2},
pages = {465-497},
publisher = {Scuola normale superiore},
title = {A generalization of the sizes of differential equations and its applications to $G$-function theory},
url = {http://eudml.org/doc/84449},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Nagata, Makoto
TI - A generalization of the sizes of differential equations and its applications to $G$-function theory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 465
EP - 497
LA - eng
KW - size of a matrix; size of a solution; -function; height
UR - http://eudml.org/doc/84449
ER -
References
top- [1] Y. André, "G-functions and Geometry", Max-Planck-Institut, Bonn, 1989. Zbl0688.10032MR990016
- [2] A. Baker, "Transcendental Number Theory", Cambridge University Press, Cambridge, 1975. Zbl0297.10013MR422171
- [3] E. Bombieri, On G-functions, Recent progress in analytic number theory 2Academic Press, New York (1981), 1-67. Zbl0461.10031MR637359
- [4] G. Christol - B. Dwork, Differential modules of bounded spectral norms, Contemp. Math.133 (1992), 39-58. Zbl0765.12003MR1183969
- [5] G. Christol - B. Dwork, Effective p-adic bounds at regular singular points, Duke Math. J.62 (1991), 689-720. Zbl0762.12004MR1104814
- [6] D.V. Chudnovsky - G.V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, Lect. Notes in Math. 1135, Springer-Verlag, Berlin, Heidelberg, New York, (1985), 9-51. Zbl0561.10016MR803349
- [7] G.V. Chudnovsky, On applications of diophantine approximations, Proc. Nat. Acad. Sci. U.S.A.81 (1984), 1926-1930. Zbl0544.10034MR768160
- [8] B. Dwork - G. Gerotto - F.J. Sullivan, "An Introduction to G-functions", Annals of Math. Studies133 (1994), Princeton University Press, Princeton, New Jersey. Zbl0830.12004MR1274045
- [9] A.I. Galo, "Estimates from below of polynomials in the values of analytic functions of a certain class", Math. USSR Sbornik24 (1974), 385-407, Original article in Math. Sbornik95 (137) (1974), 396-417. Zbl0318.10023
- [10] X. Guangshan, On the arithmetic properties of G-functions, International symposium in memory of Hua Loo Keng (Number theory)1 (1991), Springer-Verlag, Berlin, Heidelberg, New York, 331-346. Zbl0831.11035MR1135820
- [11] K. Mahler, "Lectures on Transcendental Numbers", Lect. Notes in Math.546 (1976), Springer-Verlag, Berlin, Heidelberg, New York. Zbl0332.10019MR491533
- [12] K. Mahler, Perfect systems, Compositio Math.19 (1968), 95-166. Zbl0168.31303MR239099
- [13] M. Nagata, Sequences of differential systems, Proc. Amer. Math. Soc.124 (1996), 21-25. Zbl0858.12005MR1286002
- [14] A.B. Shidlovskii, "Transcendental Numbers", Walter de Gruyter, Berlin, New York, 1989. Zbl0689.10043MR1033015
- [15] K. Väänänen, On linear forms of a certain class of G-functions and p-adic G-functions, Acta Arith.36 (1980), 273-295. Zbl0369.10021MR581376
- [16] C.L. Siegel, "Über einige Anwendungen diophantischer Approximationen ", Abh. Preuss. Akad. Wiss., Phys. Math. Kl. nr.1 (1929). Zbl56.0180.05JFM56.0180.05
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.