A spherical Harnack inequality for singular solutions of nonlinear elliptic equations
Chiun-Chuan Chen; Chang-Shou Lin
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 3-4, page 713-738
- ISSN: 0391-173X
Access Full Article
topHow to cite
topChen, Chiun-Chuan, and Lin, Chang-Shou. "A spherical Harnack inequality for singular solutions of nonlinear elliptic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 713-738. <http://eudml.org/doc/84458>.
@article{Chen2001,
author = {Chen, Chiun-Chuan, Lin, Chang-Shou},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {713-738},
publisher = {Scuola normale superiore},
title = {A spherical Harnack inequality for singular solutions of nonlinear elliptic equations},
url = {http://eudml.org/doc/84458},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Chen, Chiun-Chuan
AU - Lin, Chang-Shou
TI - A spherical Harnack inequality for singular solutions of nonlinear elliptic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 713
EP - 738
LA - eng
UR - http://eudml.org/doc/84458
ER -
References
top- [1] G. Bianchi, Nonexistence of positive solutions to semilinear elliptic equations on Rn or Rn+ through the method of moving planes, Comm. Partial Differential Equation22 (1997), 1671-1670. Zbl0910.35048MR1469586
- [2] H. Brezis - Y.Y. Li - I. Shafrir, A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Func. Anal.115 (1993), 34.4.-358. Zbl0794.35048MR1234395
- [3] L.A. Caffarelli - B. Gidas - J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev exponent, Comm. Pure Appl. Math.42 (1989),271-297. Zbl0702.35085MR982351
- [4] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991), 615-622. Zbl0768.35025MR1121147
- [5] C.C. Chen - C.S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78 (1995), 315-334. Zbl0839.35014MR1333503
- [6] C.C. Chen - C.S. Lin, On compactness and completeness of conformal metrics in Rn, Asian J. Math.1 (1997), 549-559. Zbl0901.53027MR1604918
- [7] C.C. Chen - C.S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math.50 (1997), 971-1017. Zbl0958.35013MR1466584
- [8] C.C. Chen - C.S. Lin, On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann.313 (1999), 229-245. Zbl0927.35034MR1679784
- [9] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry of positive solutions of nonlinear equations in Rn, In: "Mathematical Analysis and Applications", part A, pp. 369-402, Advances in Math. Supp. Stud.79, Academic Press, New York-London, 1981. Zbl0469.35052
- [10] N. Korevaar - R. Mazzeo - F. Pacard - R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math.135 (1999), 233-272. Zbl0958.53032MR1666838
- [11] C. Li, Local asymptotic symmetry of Singular Solutions to Nonlinear Elliptic Equations, Invent. Math.123 (1996), 221-232. Zbl0849.35009MR1374197
- [12] Y.Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys.200 (1999), 421-444. Zbl0928.35057MR1673972
- [13] C.S. Lin, On Liouville theorem and apriori estimate for the scalar curvature equations, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 107-130. Zbl0974.53032MR1658881
- [14] C.S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math.53 (2000), 611-646. Zbl1035.53052MR1737506
- [15] R. Mazzeo - F. Pacard, A construction of singular solutions for semilinear elliptic equation using asymptotic analysis, J. Differential Geom.44 (1996), 331-370. Zbl0869.35040MR1425579
- [16] D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on of subdomains of Sn' Indiana Univ. Math. J.42 (1993), 1441-1456. Zbl0794.53025MR1266101
- [17] R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformal invariant scalar equation, Comm. Pure Appl. Math.41 (1988), 317-392. Zbl0674.35027MR929283
- [18] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal.43 (1971), 304-318. Zbl0222.31007MR333220
- [19] S.D. Taliaferro, On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations158 (1999), 28-47. Zbl0939.31005MR1721720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.