On Liouville theorem and apriori estimates for the scalar curvature equations

Chang-Shou Lin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 1, page 107-130
  • ISSN: 0391-173X

How to cite

top

Lin, Chang-Shou. "On Liouville theorem and apriori estimates for the scalar curvature equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 107-130. <http://eudml.org/doc/84349>.

@article{Lin1998,
author = {Lin, Chang-Shou},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Liouville theorem; scalar curvature equation; a priori estimate},
language = {eng},
number = {1},
pages = {107-130},
publisher = {Scuola normale superiore},
title = {On Liouville theorem and apriori estimates for the scalar curvature equations},
url = {http://eudml.org/doc/84349},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Lin, Chang-Shou
TI - On Liouville theorem and apriori estimates for the scalar curvature equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 107
EP - 130
LA - eng
KW - Liouville theorem; scalar curvature equation; a priori estimate
UR - http://eudml.org/doc/84349
ER -

References

top
  1. [1] A. Bahri - J. C, The scalar curvature problem on three-dimensional sphere, J. Funct. Anal.95 (1991), 106-172. Zbl0722.53032MR1087949
  2. [2] L.A. Caffarelli - B. Gidas - J. Spruck, Asymptotic Symmetry and local behavior of semilinear elliptic equations with critical Sobolev exponent, Comm. Pure Appl. Math.42 (1989), 271-297. Zbl0702.35085MR982351
  3. [3] S.Y. Chang - M.J. Gursky - P. Yang, The scalar curvature equation on 2 and 3-splere, Calc. Var. Partial Differential Equations1 (1993), 205-229. Zbl0822.35043MR1261723
  4. [4] W. Chen - C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991), 615-622. Zbl0768.35025MR1121147
  5. [5] W. Chen - C. Li, Apriori estimates for prescribing scalar curvature equations, Ann. of Math. (2) 145 (1997), 547-564. Zbl0877.35036MR1454703
  6. [6] C.C. Chen - C.S. Lin, Estimates of the conformal scalar curvature equations via the method of moving planes, Comm. Pure Appl. Math.50 (1997), 971-1017. Zbl0958.35013MR1466584
  7. [7] C.C. Chen - C.S. Lin, Estimates of the conformal scalar curature equations via the method of moving planes, II, J. Differential Geom., 49 (1998), 115-178. Zbl0961.35047MR1642113
  8. [8] J. Escobar - R. Schoen, Conformal metric with prescribed scalar curvature, Invent. Math.86 (1986), 243-254. Zbl0628.53041MR856845
  9. [9] B. Gidas - W.M. Ni- L. Nirenberg, Symmetry of positive solutions of nonlinear equations in Rn, Analysis and Applications, part A, 369-402, Advances in Math. Supp. Stud. 79, Academic Press, New York- London, 1981. Zbl0469.35052
  10. [10] Y.Y. Li, On - Δu = K(x)u5 in R3, Comm. Pure Appl. Math.46 (1993), 303-340. 
  11. [11] Y.Y. Li, Prescribing scalar curvature on Sn and related problems, Part I. J. Differential equations120 (1995), 319-410. Zbl0827.53039MR1347349
  12. [12] Y.Y. Li, Prescribing scalar curvature on Sn and related problems, Part II: Existence and compactness, Comm. Pure Appl. Math.49 (1996), 541-597. Zbl0849.53031MR1383201
  13. [13] Y.Y. Li - M.J. Zhu, Uniqueness theorems through the method of moving sphere, Duke Math. J.80 (1995), 383-417. Zbl0846.35050MR1369398
  14. [14] C.S. Lin, Liouville-type theorems for semilinear elliptic equations involving the Sobolev exponent, Math. Z., 228 (1998), 723-744. Zbl0915.35036MR1644448
  15. [15] L. Nirenberg, "Topics in nonlinear functional analysis", Lecture notes, Courant Institute, New York University, 1974. Zbl0286.47037MR488102
  16. [16] P. Padilla, "On some nonlinear elliptic problems", Dissertations, New York University, 1994. 
  17. [17] D. Pollack, Compactness results for complete metrics of constant positive Scalar curvature on subdomains of Sn, Indiana Univ. Math. J.42 (1993), 1441-1456. Zbl0794.53025MR1266101
  18. [18] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture notes in Mathematics, No. 1365, edited by M. Giaquinta, Springer-Verlag, 1989, 20-154. Zbl0702.49038MR994021
  19. [19] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal.43 (1971), 304-318. Zbl0222.31007MR333220
  20. [20] R. Schoen - D. Zhang, Prescribed Scalar Curvature on the n-sphere, Calc. Var. Partial Differential Equations4 (1996), 1-25. Zbl0843.53037MR1379191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.