A remark on quiver varieties and Weyl groups

Andrea Maffei

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 3, page 649-686
  • ISSN: 0391-173X

Abstract

top
In this paper we define an action of the Weyl group on the quiver varieties M m , λ ( v ) with generic ( m , λ ) .

How to cite

top

Maffei, Andrea. "A remark on quiver varieties and Weyl groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 649-686. <http://eudml.org/doc/84483>.

@article{Maffei2002,
abstract = {In this paper we define an action of the Weyl group on the quiver varieties $M_\{m, \lambda \}(v)$ with generic $(m, \lambda )$.},
author = {Maffei, Andrea},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {action of Weyl group; projective ring; smooth quiver variety; quiver of finite type},
language = {eng},
number = {3},
pages = {649-686},
publisher = {Scuola normale superiore},
title = {A remark on quiver varieties and Weyl groups},
url = {http://eudml.org/doc/84483},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Maffei, Andrea
TI - A remark on quiver varieties and Weyl groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 649
EP - 686
AB - In this paper we define an action of the Weyl group on the quiver varieties $M_{m, \lambda }(v)$ with generic $(m, \lambda )$.
LA - eng
KW - action of Weyl group; projective ring; smooth quiver variety; quiver of finite type
UR - http://eudml.org/doc/84483
ER -

References

top
  1. [1] L. Le Bruyn – C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598. Zbl0693.16018MR958897
  2. [2] W. Crawley-Boevey, Geometry of the moment map for representations of quivers, preprint available at http://www.amsta.leeds.ac.uk/~pmtwc. Zbl1037.16007MR1834739
  3. [3] H. Derksen – J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), 467-479. Zbl0993.16011MR1758750
  4. [4] G. Kempf – L. Ness, The length of vectors in representation spaces, In: “Algebraic geometry”. Proc. Summer Meeting Univ. Copenhagen 1978, Vol. 732 of LNM, Springer, 1979, pp. 233-243. Zbl0407.22012MR555701
  5. [5] G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), 141-182. Zbl0915.17008MR1623674
  6. [6] G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), 461-489. Zbl0958.20036MR1775358
  7. [7] A. Maffei, A remark on quiver varieties and Weyl groups, preprint available at http://xxx.lanl.gov. Zbl1143.14309
  8. [8] A. Maffei, “Quiver varieties”, PhD thesis, Università di Roma “La Sapienza", 1999. 
  9. [9] L. Migliorini, Stability of homogeneous vector bundles, Boll. Un. Mat. Ital. 7-B (1996), 963-990. Zbl0885.14024MR1430162
  10. [10] D. Mumford – J. Fogarty – F. Kirwan, “Geometric invariant theory”, Ergebn. der Math., Vol. 34, Springer, third edition, 1994. Zbl0797.14004MR1304906
  11. [11] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416. Zbl0826.17026MR1302318
  12. [12] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. Zbl0970.17017MR1604167
  13. [13] P. Newstead, “Introduction to moduli problems and orbit spaces”, Tata Lectures, Vol. 51, Springer, 1978. Zbl0411.14003MR546290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.