Quasiconformal mappings with Sobolev boundary values

Kari Astala; Mario Bonk; Juha Heinonen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 3, page 687-731
  • ISSN: 0391-173X

Abstract

top
We consider quasiconformal mappings in the upper half space + n + 1 of n + 1 , n 2 , whose almost everywhere defined trace in n has distributional differential in L n ( n ) . We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space H 1 . More generally, we consider certain positive functions defined on + n + 1 , called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems for them. The abstract approach of general conformal densities sheds new light to the mapping case as well.

How to cite

top

Astala, Kari, Bonk, Mario, and Heinonen, Juha. "Quasiconformal mappings with Sobolev boundary values." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 687-731. <http://eudml.org/doc/84484>.

@article{Astala2002,
abstract = {We consider quasiconformal mappings in the upper half space $\mathbb \{R\}^\{n+1\}_+$ of $\mathbb \{R\}^\{n+1\}$, $n\ge 2$, whose almost everywhere defined trace in $\mathbb \{R\}^n$ has distributional differential in $L^n(\mathbb \{R\}^n)$. We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space $H^1$. More generally, we consider certain positive functions defined on $\mathbb \{R\}^\{n+1\}_+$, called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems for them. The abstract approach of general conformal densities sheds new light to the mapping case as well.},
author = {Astala, Kari, Bonk, Mario, Heinonen, Juha},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {687-731},
publisher = {Scuola normale superiore},
title = {Quasiconformal mappings with Sobolev boundary values},
url = {http://eudml.org/doc/84484},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Astala, Kari
AU - Bonk, Mario
AU - Heinonen, Juha
TI - Quasiconformal mappings with Sobolev boundary values
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 687
EP - 731
AB - We consider quasiconformal mappings in the upper half space $\mathbb {R}^{n+1}_+$ of $\mathbb {R}^{n+1}$, $n\ge 2$, whose almost everywhere defined trace in $\mathbb {R}^n$ has distributional differential in $L^n(\mathbb {R}^n)$. We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space $H^1$. More generally, we consider certain positive functions defined on $\mathbb {R}^{n+1}_+$, called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems for them. The abstract approach of general conformal densities sheds new light to the mapping case as well.
LA - eng
UR - http://eudml.org/doc/84484
ER -

References

top
  1. [Am] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 3 (1990), 439-478. Zbl0724.49027MR1079985
  2. [As] K. Astala, Quasiharmonic analysis and BMO, University of Joensuu, Publications in Sciences, 14 (1989), 9-19. Zbl0743.30032MR1041109
  3. [AG] K. Astala – F. W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Mich. Math. J. 32 (1985), 99-107. Zbl0574.30027MR777305
  4. [AK] K. Astala – P. Koskela, H p -theory for quasiconformal mappings, in preparation. Zbl1248.30006
  5. [BL] Y. Benyamini – J. Lindenstrauss, “Geometric Nonlinear Functional Analysis”, Volume I, Vol. 48 of Colloquium Publications, American Mathematical Society, Providence, R.I., 2000. Zbl0946.46002MR1727673
  6. [BM] A. Baernstein II – J. J. Manfredi, Topics in quasiconformal mapping, In: “Topics in Modern Harmonic Analysis”, Proc. Seminar held in Torino and Milano II (1982), 819-862. Zbl0567.30015MR748884
  7. [BA] A. Beurling – L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 124-142. Zbl0072.29602MR86869
  8. [BK] M. Bonk – P. Koskela, Conformal metrics and size of the boundary, Amer. J. Math., to appear. Zbl1018.30016MR1939786
  9. [BHK] M. Bonk – J. Heinonen – P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270, 2001. Zbl0970.30010MR1829896
  10. [BHR] M. Bonk – J. Heinonen – S. Rohde, Doubling conformal densities, J. reine angew. Math. 541 (2001), 117-141. Zbl0987.30009MR1876287
  11. [BKR] M. Bonk – P. Koskela – S. Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. 77 (1998), 635-664. Zbl0916.30017MR1643421
  12. [CST] A. Connes – D. Sullivan – N. Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), 663-681. Zbl0840.57013MR1293305
  13. [DU] J. Diestel – J. J. Uhl, “Vector Measures”, American Mathematical Society, Providence, R.I., 1977. Zbl0369.46039MR453964
  14. [D] J. L. Doob, “Classical Potential Theory and its Probabilistic Counterpart”, Springer-Verlag, New York, 1984. Zbl0549.31001MR731258
  15. [Fe] H. Federer, “Geometric Measure Theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl0176.00801MR257325
  16. [Fu] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-218. Zbl0079.27703MR97720
  17. [Ga] J. Garnett, “Bounded Analytic Functions”, Academic Press, New York, 1981. Zbl0469.30024MR628971
  18. [G1] F. W. Gehring, The Hausdorff measure of sets which link in euclidean space, Contributions to analysis: A collection of papers dedicated to Lipman Bers, Academic Press, New York, 1974. Zbl0295.28031MR361008
  19. [G2] F. W. Gehring, Lower dimensional absolute continuity properties of quasiconformal mappings, Math. Proc. Cambridge Philos. Soc. 78 (1975), 81-93. Zbl0307.30026MR382638
  20. [G3] F. W. Gehring, Absolute continuity properties of quasiconformal mappings, Symposia Math. XVIII (1976), 551-559. Zbl0342.30013MR466540
  21. [GH] F. W. Gehring – W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pure Appl. 41 (1962), 353-361. Zbl0105.28002MR148884
  22. [GO] F. W. Gehring – B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Anal. Math. 36 (1979), 50-74. Zbl0449.30012MR581801
  23. [GT] D. Gilbarg – N. S. Trudinger, “Elliptic Partial Differential Operators of Second Order”, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0361.35003MR737190
  24. [HaK] P. Hajłasz – P. Koskela, Sobolev met Poincaré, Memoirs Amer. Math. Soc. 145, 2000. Zbl0954.46022MR1683160
  25. [Ha] B. Hanson, Quasiconformal analogues of a theorem of Smirnov, Math. Scand. 75 (1994), 133-149. Zbl0844.30013MR1308944
  26. [H1] J. Heinonen, The boundary absolute continuity of quasiconformal mappings, Amer. J. Math. 116 (1994), 1545-1567. Zbl0822.30022MR1305877
  27. [H2] J. Heinonen, The boundary absolute continuity of quasiconformal mappings II, Rev. Mat. Iberoamericana 12 (1996), 697-725. Zbl0872.30012MR1435481
  28. [H3] J. Heinonen, A theorem of Semmes and the boundary absolute continuity in all dimensions, Rev. Mat. Iberoamericana 12 (1996), 783-789. Zbl0881.30021MR1435483
  29. [HKM] J. Heinonen – T. Kilpeläinen – O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford University Press, 1993. Zbl0780.31001MR1207810
  30. [HeK] J. Heinonen – P. Koskela, The boundary distortion of a quasiconformal mapping, Pacific J. Math. 165 (1994), 93-114. Zbl0813.30017MR1285566
  31. [HKST] J. Heinonen – P. Koskela – N. Shanmugalingam – J.T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. Zbl1013.46023MR1869604
  32. [HS] J. Heinonen – S. Semmes, Thirty-three Y E S or N O questions about mappings, measures, and metrics, Conformal Geom. Dyn. 1 (1997), 1-12. Zbl0885.00006MR1452413
  33. [JW] D. Jerison – A. Weitsman, On the means of quasiregular and quasiconformal mappings, Proc. Amer. Math. Soc. 83 (1981), 304-306. Zbl0471.30008MR624919
  34. [J] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66. Zbl0432.42017MR554817
  35. [K] W. Kaplan, On Gross’s star theorem, schlicht functions, logarithmic potentials, and Fourier series, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys. 86 (1951), 1-23. Zbl0042.31401MR43901
  36. [KSh] S. Kallunki – N. Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 26 (2001), 455-464. Zbl1002.31004MR1833251
  37. [KS] N. J. Korevaar – R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561-659. Zbl0862.58004MR1266480
  38. [KM] P. Koskela – P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), 1-17. Zbl0918.30011MR1628655
  39. [KR] P. Koskela – S. Rohde, Hausdorff dimension and mean porosity, Math. Ann. 309 (1997), 593-609. Zbl0890.30013MR1483825
  40. [Ma] N. G. Makarov, Probability methods in the theory of conformal mappings, (in Russian) Algebra and Analysis 1 (1989), 1-59. Zbl0736.30006MR1015333
  41. [Mz] V. G. Maz’ja, “Sobolev Spaces”, Springer-Verlag, Berlin, 1985. MR817985
  42. [MZ] J. Malý – W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, AMS Mathematical Surveys and Monographs, 51, Providence, R.I., 1997. Zbl0882.35001MR1461542
  43. [Po] Ch. Pommerenke, “Boundary Behaviour of Conformal Maps”, Springer-Verlag, Berlin-Heidelberg-New York, 1992. Zbl0762.30001MR1217706
  44. [Pr] I. I. Priwalow, “Randeigenschaften analytischer Funktionen”, Deutscher Verlag Wiss., Berlin, 1956. Zbl0073.06501MR83565
  45. [Re] Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), 657-675. Zbl0944.46024MR1457485
  46. [Ri] F. Riesz – M. Riesz, Über die Randwerte einer analytischen Funktion, 4. Cong. Scand. Math., Stockholm (1916), 27-44. JFM47.0295.03
  47. [RS1] R. Rochberg – S. Semmes, End point results for estimates of singular values of singular integral operators, Contributions to operator theory and its applications (Mosa, AZ, 1987), pp. 217-231, in Oper. Theory Adv. Appl. 35, Birkhäuser, Basel, 1988. Zbl0681.47014MR1017671
  48. [RS2] R. Rochberg – S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. Zbl0699.47012MR1021138
  49. [Se] S. Semmes, Quasisymmetry, measure, and a question of Heinonen, Rev. Mat. Iberoamericana 12 (1996), 727-781. Zbl0881.30020MR1435482
  50. [Sh] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243-279. Zbl0974.46038MR1809341
  51. [St] E. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  52. [SW] E. Stein – G. Weiss, “Introduction to Fourier Analysis on Euclidean Spaces”, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007MR304972
  53. [Su] D. Sullivan, Hyperbolic geometry and homeomorphisms, In: “Geometric Topology” (Proc. Georgia Topology Conf. Athens, Ga, 1977), pp. 543-555, Academic Press, New York, 1979. Zbl0478.57007MR537749
  54. [TV] P. TukiaJ. Väisälä, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 303-342. Zbl0448.30021MR658932
  55. [V1] J. Väisälä, “Lectures on n -dimensional Quasiconformal Mappings”, Lecture Notes in Math. 229, Springer-Verlag, Berlin, 1971. Zbl0221.30031MR454009
  56. [V2] J. Väisälä, Quasi-symmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), 191-204. Zbl0456.30018MR597876
  57. [V3] J. Väisälä, The wall conjecture on domains in Euclidean spaces, Manuscripta Math. 93 (1997), 515-534. Zbl0878.30013MR1465895
  58. [Vu] M. Vuorinen, “Conformal Geometry and Quasiregular Mappings”, Lecture Notes in Math. 1319, Springer-Verlag, Berlin, 1988. Zbl0646.30025MR950174
  59. [W] P. Wojtaszczyk, “Banach Spaces for Analysts”, Cambridge Studies in adv. math. 25, Cambridge University Press, 1991. Zbl0724.46012MR1144277
  60. [Y] K. Yosida, “Functional Analysis”, Springer-Verlag, Berlin-Heidelberg-New York, 1965. Zbl0126.11504
  61. [Zie] W. P. Ziemer, Extremal length and p -capacity, Mich. Math. J. 16 (1969), 43-51. Zbl0172.38701MR247077
  62. [Zin] M. Zinsmeister, A distortion theorem for quasiconformal mappings, Bull. Soc. Math. France 114 (1986), 123-133. Zbl0602.30027MR860655
  63. [Zo] V. A. Zorich, Angular boundary values of quasiconformal mappings of a ball, Dokl. Akad. Nauk. SSSR 179 (1967), 1492-1494. Zbl0176.37902MR222291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.