A distortion theorem for quasiconformal mappings

Michel Zinsmeister

Bulletin de la Société Mathématique de France (1986)

  • Volume: 114, page 123-133
  • ISSN: 0037-9484

How to cite

top

Zinsmeister, Michel. "A distortion theorem for quasiconformal mappings." Bulletin de la Société Mathématique de France 114 (1986): 123-133. <http://eudml.org/doc/87505>.

@article{Zinsmeister1986,
author = {Zinsmeister, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {K-quasiconformal mapping; maximal function inequality},
language = {eng},
pages = {123-133},
publisher = {Société mathématique de France},
title = {A distortion theorem for quasiconformal mappings},
url = {http://eudml.org/doc/87505},
volume = {114},
year = {1986},
}

TY - JOUR
AU - Zinsmeister, Michel
TI - A distortion theorem for quasiconformal mappings
JO - Bulletin de la Société Mathématique de France
PY - 1986
PB - Société mathématique de France
VL - 114
SP - 123
EP - 133
LA - eng
KW - K-quasiconformal mapping; maximal function inequality
UR - http://eudml.org/doc/87505
ER -

References

top
  1. [1] BOJARSKI (B.) and IWANIEC (T.). — Analytical foundations of the theory of quasi-conformal mappings in ℝn, Ann. Acad. Sc. Fenn. 8 (1983) p. 257-324. Zbl0548.30016MR85h:30023
  2. [2] DAVIS (B.) and LEWIS (J.). — Paths for subharmonic functions, Proc. London Math. Soc., Vol. XLVIII, 1984, p. 401-428. Zbl0541.31001MR85m:31002
  3. [3] GARNETT (J.), Bounded analytic functions, Academic Press, 1981. Zbl0469.30024MR83g:30037
  4. [4] GEHRING (F.), Rings and quasiconformal mappings in space, Trans. AMS, Vol. 103, 1962, p. 353-393. Zbl0113.05805MR25 #3166
  5. [5] GEHRING (F.). — The Lp integrability of the partial derivatives of a quasiconformal mapping, Acta Math., Vol. 130, 1973, pp. 265-277. Zbl0258.30021MR53 #5861
  6. [6] IWANIEC (T.) and NOLDER (C.). — Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝn, Ann. Acad. Sc. Fenn. (to appear). Zbl0588.30023
  7. [7] JOHN (F.) and NIRENBERG (L.). — On functions of bounded mean oscillation, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 415-426. Zbl0102.04302MR24 #A1348
  8. [8] JONES (P.). — Extension theorems for BMO, Indiana J. Math., Vol. 29, 1980, pp. 41-66. Zbl0432.42017MR81b:42047
  9. [9] POMMERENKE (C.). — Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975. Zbl0298.30014MR58 #22526
  10. [10] VAROPOULOS (N.). — BMO functions and the ∂ equation, Pacific J. Math., Vol. 71, 1977, pp. 221-273. Zbl0371.35035MR58 #22639a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.