On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles

Fouad Elzein; András Némethi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 869-903
  • ISSN: 0391-173X

Abstract

top
Let Y be a normal crossing divisor in the smooth complex projective algebraic variety X and let U be a tubular neighbourhood of Y in X . Using geometrical properties of different intersections of the irreducible components of Y , and of the embedding Y X , we provide the “normal forms” of a set of geometrical cycles which generate H * ( A , B ) , where ( A , B ) is one of the following pairs ( Y , ) , ( X , Y ) , ( X , X - Y ) , ( X - Y , ) and ( U , ) . The construction is compatible with the weights in H * ( A , B , ) of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of Y , giving rise to a chain situated in U .

How to cite

top

Elzein, Fouad, and Némethi, András. "On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 869-903. <http://eudml.org/doc/84490>.

@article{Elzein2002,
abstract = {Let $Y$ be a normal crossing divisor in the smooth complex projective algebraic variety $X$ and let $U$ be a tubular neighbourhood of $Y$ in $X$. Using geometrical properties of different intersections of the irreducible components of $Y$, and of the embedding $Y\subset X$, we provide the “normal forms” of a set of geometrical cycles which generate $H_*(A,B)$, where $(A,B)$ is one of the following pairs $(Y,\emptyset )$, $(X,Y)$, $(X,X-Y)$, $(X-Y,\emptyset )$ and $(\partial U,\emptyset )$. The construction is compatible with the weights in $H_*(A,B,\{\mathbb \{Q\}\})$ of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of $Y$, giving rise to a chain situated in $\partial U$.},
author = {Elzein, Fouad, Némethi, András},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {869-903},
publisher = {Scuola normale superiore},
title = {On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles},
url = {http://eudml.org/doc/84490},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Elzein, Fouad
AU - Némethi, András
TI - On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 869
EP - 903
AB - Let $Y$ be a normal crossing divisor in the smooth complex projective algebraic variety $X$ and let $U$ be a tubular neighbourhood of $Y$ in $X$. Using geometrical properties of different intersections of the irreducible components of $Y$, and of the embedding $Y\subset X$, we provide the “normal forms” of a set of geometrical cycles which generate $H_*(A,B)$, where $(A,B)$ is one of the following pairs $(Y,\emptyset )$, $(X,Y)$, $(X,X-Y)$, $(X-Y,\emptyset )$ and $(\partial U,\emptyset )$. The construction is compatible with the weights in $H_*(A,B,{\mathbb {Q}})$ of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of $Y$, giving rise to a chain situated in $\partial U$.
LA - eng
UR - http://eudml.org/doc/84490
ER -

References

top
  1. [1] N. A’Campo, La fonction zéta d’une monodromie, Commentarii Mathematici Helvetici 50 (1975), 233-248. Zbl0333.14008MR371889
  2. [2] A. Borel et al., “Seminar on Intersection Cohomology”, Forschungsinstitut für Mathematik ETH Zürich, 1984. Zbl0553.14002
  3. [3] G. E. Bredon, Topology and Geometry, In: “Graduate Texts in Mathematics”, 139, Springer 1993. Zbl0791.55001MR1224675
  4. [4] G. E. Bredon, Sheaf Theory, In: “Graduate Texts in Mathematics”, 170, Springer 1997. Zbl0874.55001MR1481706
  5. [5] C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. Journal 44 (1977), 215-290. Zbl0353.14005MR444662
  6. [6] P. Deligne, Théorie de Hodge, II, III, Publ. Math. IHES 40, 44 (1972, 1975), 5-47, 6-77. Zbl0237.14003MR498551
  7. [7] F. El Zein, Introduction à la théorie de Hodge mixed, In: “Actualiés Mathématiques”, Hermann, Paris 1991. Zbl0718.58001MR1160988
  8. [8] A. Fujiki, Duality of Mixed Hodge Structures of Algebraic Varieties, Publ. RIMS, Kyoto Univ., 16 (1980), 635-667. Zbl0475.14006MR602463
  9. [9] M. Goresky – R. MacPherson, Intersection Homology Theory, Topology, 19 (1980), 135-162. Zbl0448.55004MR572580
  10. [10] M. Goresky – R. MacPherson, Intersection Homology II, Invent. Math. 71 (1983), 77-129. Zbl0529.55007MR696691
  11. [11] P. Griffiths – W. Schmid, Recent developments in Hodge Theory, In: “Discrete subgroups of Lie groups”, Bombay Colloquium, Oxford Univ. Press, 1973. Zbl0355.14003
  12. [12] F. Guillén – V. Navarro Aznar – P. Pascual-Gainza – F. Puerto, “Hyperrésolutions cubiques et descente cohomologique”, Lecture Notes in Math., 1335, Springer-Verlag 1988. Zbl0638.00011
  13. [13] N. Habegger – L. Saper, Intersection cohomology of cs-spaces and Zeeman’s filtration, Invent. Math. 105 (1991), 247-272. Zbl0759.55003MR1115543
  14. [14] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. Zbl0122.38603MR199184
  15. [15] H. Hironaka, Triangulations of algebraic sets, Proceedings of Symposia in Pure Mathematics 29 (1975), 165-185. Zbl0332.14001MR374131
  16. [16] H. C. King, Topological invariance of intersection homology without sheaves, Topology and its applications 20 (1985), 149-160. Zbl0568.55003MR800845
  17. [17] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. Zbl0199.41203MR125984
  18. [18] R. MacPherson, “Intersection homology and perverse sheaves”, Lecture notes distributed at the 97th AMS meeting, San Francisco, 1991. 
  19. [19] C. McCrory, On the topology of Deligne weight filtration, Proc. of Symp. in Pure Math. 40, Part 2 (1983), 217-226. Zbl0538.14014MR713250
  20. [20] V. Navarro Aznar, Sur la Théorie de Hodge des Variétés Algébriques à Singularités Isolées, Astérisque 130 (1985), 272-305. Zbl0599.14007MR804059
  21. [21] A. Parusiński, “Blow-analytic retraction onto the central fibre”, Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996), Pitman Res. Notes Math. Ser., 381, 43-61. Zbl0899.32014MR1607674
  22. [22] C. P. Rourke, – B. J. Sanderson, “Introduction to piecewise linear topology”, Springer Study edition, 1982. Zbl0477.57003MR665919
  23. [23] J. H. M. Steenbrink – J. Stevens, Topological invariance of the weight filtration, Indagationes Math. 46 (1984). Zbl0539.14016MR748980
  24. [24] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Proc. of Symp. in Pure Math. 40, Part 2 (1983), 513-536. Zbl0515.14003MR713277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.