On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles

Fouad Elzein; András Némethi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 869-903
  • ISSN: 0391-173X

Abstract

top
Let Y be a normal crossing divisor in the smooth complex projective algebraic variety X and let U be a tubular neighbourhood of Y in X . Using geometrical properties of different intersections of the irreducible components of Y , and of the embedding Y X , we provide the “normal forms” of a set of geometrical cycles which generate H * ( A , B ) , where ( A , B ) is one of the following pairs ( Y , ) , ( X , Y ) , ( X , X - Y ) , ( X - Y , ) and ( U , ) . The construction is compatible with the weights in H * ( A , B , ) of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of Y , giving rise to a chain situated in U .

How to cite

top

Elzein, Fouad, and Némethi, András. "On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 869-903. <http://eudml.org/doc/84490>.

@article{Elzein2002,
abstract = {Let $Y$ be a normal crossing divisor in the smooth complex projective algebraic variety $X$ and let $U$ be a tubular neighbourhood of $Y$ in $X$. Using geometrical properties of different intersections of the irreducible components of $Y$, and of the embedding $Y\subset X$, we provide the “normal forms” of a set of geometrical cycles which generate $H_*(A,B)$, where $(A,B)$ is one of the following pairs $(Y,\emptyset )$, $(X,Y)$, $(X,X-Y)$, $(X-Y,\emptyset )$ and $(\partial U,\emptyset )$. The construction is compatible with the weights in $H_*(A,B,\{\mathbb \{Q\}\})$ of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of $Y$, giving rise to a chain situated in $\partial U$.},
author = {Elzein, Fouad, Némethi, András},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {869-903},
publisher = {Scuola normale superiore},
title = {On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles},
url = {http://eudml.org/doc/84490},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Elzein, Fouad
AU - Némethi, András
TI - On the weight filtration of the homology of algebraic varieties : the generalized Leray cycles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 869
EP - 903
AB - Let $Y$ be a normal crossing divisor in the smooth complex projective algebraic variety $X$ and let $U$ be a tubular neighbourhood of $Y$ in $X$. Using geometrical properties of different intersections of the irreducible components of $Y$, and of the embedding $Y\subset X$, we provide the “normal forms” of a set of geometrical cycles which generate $H_*(A,B)$, where $(A,B)$ is one of the following pairs $(Y,\emptyset )$, $(X,Y)$, $(X,X-Y)$, $(X-Y,\emptyset )$ and $(\partial U,\emptyset )$. The construction is compatible with the weights in $H_*(A,B,{\mathbb {Q}})$ of Deligne’s mixed Hodge structure. The main technical part is to construct “the generalized Leray inverse image” of chains of the components of $Y$, giving rise to a chain situated in $\partial U$.
LA - eng
UR - http://eudml.org/doc/84490
ER -

References

top
  1. [1] N. A’Campo, La fonction zéta d’une monodromie, Commentarii Mathematici Helvetici 50 (1975), 233-248. Zbl0333.14008MR371889
  2. [2] A. Borel et al., “Seminar on Intersection Cohomology”, Forschungsinstitut für Mathematik ETH Zürich, 1984. Zbl0553.14002
  3. [3] G. E. Bredon, Topology and Geometry, In: “Graduate Texts in Mathematics”, 139, Springer 1993. Zbl0791.55001MR1224675
  4. [4] G. E. Bredon, Sheaf Theory, In: “Graduate Texts in Mathematics”, 170, Springer 1997. Zbl0874.55001MR1481706
  5. [5] C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. Journal 44 (1977), 215-290. Zbl0353.14005MR444662
  6. [6] P. Deligne, Théorie de Hodge, II, III, Publ. Math. IHES 40, 44 (1972, 1975), 5-47, 6-77. Zbl0237.14003MR498551
  7. [7] F. El Zein, Introduction à la théorie de Hodge mixed, In: “Actualiés Mathématiques”, Hermann, Paris 1991. Zbl0718.58001MR1160988
  8. [8] A. Fujiki, Duality of Mixed Hodge Structures of Algebraic Varieties, Publ. RIMS, Kyoto Univ., 16 (1980), 635-667. Zbl0475.14006MR602463
  9. [9] M. Goresky – R. MacPherson, Intersection Homology Theory, Topology, 19 (1980), 135-162. Zbl0448.55004MR572580
  10. [10] M. Goresky – R. MacPherson, Intersection Homology II, Invent. Math. 71 (1983), 77-129. Zbl0529.55007MR696691
  11. [11] P. Griffiths – W. Schmid, Recent developments in Hodge Theory, In: “Discrete subgroups of Lie groups”, Bombay Colloquium, Oxford Univ. Press, 1973. Zbl0355.14003
  12. [12] F. Guillén – V. Navarro Aznar – P. Pascual-Gainza – F. Puerto, “Hyperrésolutions cubiques et descente cohomologique”, Lecture Notes in Math., 1335, Springer-Verlag 1988. Zbl0638.00011
  13. [13] N. Habegger – L. Saper, Intersection cohomology of cs-spaces and Zeeman’s filtration, Invent. Math. 105 (1991), 247-272. Zbl0759.55003MR1115543
  14. [14] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. Zbl0122.38603MR199184
  15. [15] H. Hironaka, Triangulations of algebraic sets, Proceedings of Symposia in Pure Mathematics 29 (1975), 165-185. Zbl0332.14001MR374131
  16. [16] H. C. King, Topological invariance of intersection homology without sheaves, Topology and its applications 20 (1985), 149-160. Zbl0568.55003MR800845
  17. [17] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. Zbl0199.41203MR125984
  18. [18] R. MacPherson, “Intersection homology and perverse sheaves”, Lecture notes distributed at the 97th AMS meeting, San Francisco, 1991. 
  19. [19] C. McCrory, On the topology of Deligne weight filtration, Proc. of Symp. in Pure Math. 40, Part 2 (1983), 217-226. Zbl0538.14014MR713250
  20. [20] V. Navarro Aznar, Sur la Théorie de Hodge des Variétés Algébriques à Singularités Isolées, Astérisque 130 (1985), 272-305. Zbl0599.14007MR804059
  21. [21] A. Parusiński, “Blow-analytic retraction onto the central fibre”, Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996), Pitman Res. Notes Math. Ser., 381, 43-61. Zbl0899.32014MR1607674
  22. [22] C. P. Rourke, – B. J. Sanderson, “Introduction to piecewise linear topology”, Springer Study edition, 1982. Zbl0477.57003MR665919
  23. [23] J. H. M. Steenbrink – J. Stevens, Topological invariance of the weight filtration, Indagationes Math. 46 (1984). Zbl0539.14016MR748980
  24. [24] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Proc. of Symp. in Pure Math. 40, Part 2 (1983), 513-536. Zbl0515.14003MR713277

NotesEmbed ?

top

You must be logged in to post comments.