A new proof of the rectifiable slices theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 4, page 905-924
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topJerrard, Robert L.. "A new proof of the rectifiable slices theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 905-924. <http://eudml.org/doc/84491>.
@article{Jerrard2002,
abstract = {This paper gives a new proof of the fact that a $k$-dimensional normal current $T$ in $\mathbb \{R\}^m$ is integer multiplicity rectifiable if and only if for every projection $P$ onto a $k$-dimensional subspace, almost every slice of $T$ by $P$ is $0$-dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.},
author = {Jerrard, Robert L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {normal currents},
language = {eng},
number = {4},
pages = {905-924},
publisher = {Scuola normale superiore},
title = {A new proof of the rectifiable slices theorem},
url = {http://eudml.org/doc/84491},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Jerrard, Robert L.
TI - A new proof of the rectifiable slices theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 905
EP - 924
AB - This paper gives a new proof of the fact that a $k$-dimensional normal current $T$ in $\mathbb {R}^m$ is integer multiplicity rectifiable if and only if for every projection $P$ onto a $k$-dimensional subspace, almost every slice of $T$ by $P$ is $0$-dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.
LA - eng
KW - normal currents
UR - http://eudml.org/doc/84491
ER -
References
top- [1] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 17 (1990), 439-478. Zbl0724.49027MR1079985
- [2] L. Ambrosio – B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1-80. Zbl0984.49025MR1794185
- [3] J. Bliedtner – P. Loeb, A reduction technique for limit theorems in analysis and probability theory, Ark. Math. 30 (1992), 25-43. Zbl0757.28006MR1171093
- [4] L. C. Evans – R. F. Gariepy, “Measure theory and fine properties of functions”, CRC Press, Boca Raton, Florida, 1992. Zbl0804.28001MR1158660
- [5] H. Federer, “Geometric measure theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl0176.00801MR257325
- [6] M. Giaquinta – G. Modica – J. Souček, “Cartesian currents in the calculus of variations. I. Cartesian currents”, Springer-Verlag, 1998. Zbl0914.49001MR1645086
- [7] M. Giaquinta – G. Modica – J. Souček, “Cartesian currents in the calculus of variations. II. Variational integrals”, Springer-Verlag, 1998. Zbl0914.49002MR1645082
- [8] E. Giusti, “Minimal surfaces and functions of bounded variation”, Birkhäuser, 1984. Zbl0545.49018MR775682
- [9] R. L. Jerrard – H. M. Soner, Rectifiability of the distributional Jacobian for a class of functions, C.R. Acad. Sci. Paris, Série I, 329 (1999), 683-688. Zbl0946.49033MR1724082
- [10] R. L. Jerrard – H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. Zbl1057.49036MR1911049
- [11] L. Simon, “Lectures on geometric measure theory”, Australian National University, 1984. Zbl0546.49019MR756417
- [12] M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 773-812. Zbl0943.49012MR1720517
- [13] B. White, Rectifiability of flat chains, Ann. of Math. (2), 150 (1999), 165-184. Zbl0965.49024MR1715323
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.