Families of differential forms on complex spaces

Vincenzo Ancona; Bernard Gaveau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 1, page 119-150
  • ISSN: 0391-173X

Abstract

top
On every reduced complex space X we construct a family of complexes of soft sheaves Λ X ; each of them is a resolution of the constant sheaf X and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of X . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

How to cite

top

Ancona, Vincenzo, and Gaveau, Bernard. "Families of differential forms on complex spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 119-150. <http://eudml.org/doc/84493>.

@article{Ancona2003,
abstract = {On every reduced complex space $X$ we construct a family of complexes of soft sheaves $\Lambda _X$; each of them is a resolution of the constant sheaf $\mathbb \{C\}_X$ and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of $X$. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.},
author = {Ancona, Vincenzo, Gaveau, Bernard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {119-150},
publisher = {Scuola normale superiore},
title = {Families of differential forms on complex spaces},
url = {http://eudml.org/doc/84493},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Ancona, Vincenzo
AU - Gaveau, Bernard
TI - Families of differential forms on complex spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 119
EP - 150
AB - On every reduced complex space $X$ we construct a family of complexes of soft sheaves $\Lambda _X$; each of them is a resolution of the constant sheaf $\mathbb {C}_X$ and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of $X$. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.
LA - eng
UR - http://eudml.org/doc/84493
ER -

References

top
  1. [A] D. Arapura, “Building mixed Hodge structures, The arithmetic and geometry of algebraic cycles”, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000. Zbl0973.14004MR1736874
  2. [AG1] V. Ancona – B. Gaveau, Le complexe de De Rham d’un espace analytique normal, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 577-581. Zbl0784.32012MR1181295
  3. [AG2] V. Ancona – B. Gaveau, Intégrales de formes différentielles et théorèmes de De Rham sur un espace analytique, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 65-70. Zbl0789.32006MR1228967
  4. [AG3] V. Ancona – B. Gaveau, Théorèmes de De Rham sur un espace analytique, Rev. Roumaine de Math. Pures appl. 38 (1993), 579-594. Zbl0810.32009MR1263205
  5. [AG4] V. Ancona – B. Gaveau, The De Rham complex of a reduced complex space, In: “Contribution to complex analysis and analytic geometry”, H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994. Zbl0827.32005MR1319343
  6. [AG5] V. Ancona – B. Gaveau, Théorie de Hodge et complexe de De Rham holomorphe pour certains espaces analytiques, Bull. Sci. Math. 122 (1998), 163-201. Zbl0928.32004MR1621580
  7. [AG6] V. Ancona – B. Gaveau, Suites spectrales, formes holomorphes et théorie de Hodge de certains espaces analytiques, “Proceedings of Coimbra conference on Partial differential equations and Mathematical Physics” J. Vaillant and J. Carvalho e Silva (eds.), Textos Mat. Ser. B, 24 (2000), 1-14. Zbl1115.32301
  8. [AG7] V. Ancona – B. Gaveau, Differential forms, integration and Hodge theory on complex analytic spaces, Preprint 2001. 
  9. [BH] T. Bloom – M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. Zbl0175.37301MR248349
  10. [C] J. Carlson, Polyhedral resolutions of algebraic varieties, Trans. Amer. Math. Soc. 292 (1985), 595-612. Zbl0602.14012MR808740
  11. [D] P. Deligne, Théorie de Hodge II et III, Publ. Math. IHES 40 (1971), 5-58 et 44 (1974), 5-77. Zbl0237.14003MR498551
  12. [E] F. Elzein, Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. Zbl0511.14003MR678337
  13. [GK] H. Grauert – H. Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. Zbl0118.30401MR170354
  14. [GNPP1] F. Guillèn – V. Navarro Aznar – P. Pascual Gainza – P. Puertas, “Théorie de Hodge via schémas cubiques, Notes polycopiées”, Univ. Politecnica de Catalunya, 1982. 
  15. [GNPP2] F. Guillèn – V. Navarro Aznar – P. Pascual Gainza – P. Puertas, Hyperrésolutions cubiques et descente cohomologique, Lecture notes in Math. 1335, Springer, 1988. Zbl0638.00011
  16. [GS] P. Griffiths – W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, “Proceedings of the International Colloquium on Discrete subgroups of Lie groups”, (Bombay, 1973), Oxford University Press, 1975. Zbl0355.14003MR419850
  17. [L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. Zbl0199.41203MR125984
  18. [R] H. J. Reiffen, Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Z. 101 (1964), 269-284. Zbl0164.09401MR223599
  19. [S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269-331. Zbl0374.57002MR646078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.