Families of differential forms on complex spaces
Vincenzo Ancona; Bernard Gaveau
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 1, page 119-150
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topAncona, Vincenzo, and Gaveau, Bernard. "Families of differential forms on complex spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 119-150. <http://eudml.org/doc/84493>.
@article{Ancona2003,
abstract = {On every reduced complex space $X$ we construct a family of complexes of soft sheaves $\Lambda _X$; each of them is a resolution of the constant sheaf $\mathbb \{C\}_X$ and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of $X$. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.},
author = {Ancona, Vincenzo, Gaveau, Bernard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {119-150},
publisher = {Scuola normale superiore},
title = {Families of differential forms on complex spaces},
url = {http://eudml.org/doc/84493},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Ancona, Vincenzo
AU - Gaveau, Bernard
TI - Families of differential forms on complex spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 119
EP - 150
AB - On every reduced complex space $X$ we construct a family of complexes of soft sheaves $\Lambda _X$; each of them is a resolution of the constant sheaf $\mathbb {C}_X$ and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of $X$. The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.
LA - eng
UR - http://eudml.org/doc/84493
ER -
References
top- [A] D. Arapura, “Building mixed Hodge structures, The arithmetic and geometry of algebraic cycles”, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000. Zbl0973.14004MR1736874
- [AG1] V. Ancona – B. Gaveau, Le complexe de De Rham d’un espace analytique normal, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 577-581. Zbl0784.32012MR1181295
- [AG2] V. Ancona – B. Gaveau, Intégrales de formes différentielles et théorèmes de De Rham sur un espace analytique, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 65-70. Zbl0789.32006MR1228967
- [AG3] V. Ancona – B. Gaveau, Théorèmes de De Rham sur un espace analytique, Rev. Roumaine de Math. Pures appl. 38 (1993), 579-594. Zbl0810.32009MR1263205
- [AG4] V. Ancona – B. Gaveau, The De Rham complex of a reduced complex space, In: “Contribution to complex analysis and analytic geometry”, H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994. Zbl0827.32005MR1319343
- [AG5] V. Ancona – B. Gaveau, Théorie de Hodge et complexe de De Rham holomorphe pour certains espaces analytiques, Bull. Sci. Math. 122 (1998), 163-201. Zbl0928.32004MR1621580
- [AG6] V. Ancona – B. Gaveau, Suites spectrales, formes holomorphes et théorie de Hodge de certains espaces analytiques, “Proceedings of Coimbra conference on Partial differential equations and Mathematical Physics” J. Vaillant and J. Carvalho e Silva (eds.), Textos Mat. Ser. B, 24 (2000), 1-14. Zbl1115.32301
- [AG7] V. Ancona – B. Gaveau, Differential forms, integration and Hodge theory on complex analytic spaces, Preprint 2001.
- [BH] T. Bloom – M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. Zbl0175.37301MR248349
- [C] J. Carlson, Polyhedral resolutions of algebraic varieties, Trans. Amer. Math. Soc. 292 (1985), 595-612. Zbl0602.14012MR808740
- [D] P. Deligne, Théorie de Hodge II et III, Publ. Math. IHES 40 (1971), 5-58 et 44 (1974), 5-77. Zbl0237.14003MR498551
- [E] F. Elzein, Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. Zbl0511.14003MR678337
- [GK] H. Grauert – H. Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. Zbl0118.30401MR170354
- [GNPP1] F. Guillèn – V. Navarro Aznar – P. Pascual Gainza – P. Puertas, “Théorie de Hodge via schémas cubiques, Notes polycopiées”, Univ. Politecnica de Catalunya, 1982.
- [GNPP2] F. Guillèn – V. Navarro Aznar – P. Pascual Gainza – P. Puertas, Hyperrésolutions cubiques et descente cohomologique, Lecture notes in Math. 1335, Springer, 1988. Zbl0638.00011
- [GS] P. Griffiths – W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, “Proceedings of the International Colloquium on Discrete subgroups of Lie groups”, (Bombay, 1973), Oxford University Press, 1975. Zbl0355.14003MR419850
- [L] J. Leray, Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. Zbl0199.41203MR125984
- [R] H. J. Reiffen, Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Z. 101 (1964), 269-284. Zbl0164.09401MR223599
- [S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269-331. Zbl0374.57002MR646078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.