On singular perturbation problems with Robin boundary condition

Henri Berestycki; Juncheng Wei

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 1, page 199-230
  • ISSN: 0391-173X

Abstract

top
We consider the following singularly perturbed elliptic problem ϵ 2 Δ u - u + f ( u ) = 0 , u > 0 in Ω , ϵ u ν + λ u = 0 on Ω , where f satisfies some growth conditions, 0 λ + , and Ω N ( N > 1 ) is a smooth and bounded domain. The cases λ = 0 (Neumann problem) and λ = + (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant λ * > 1 such that, as ϵ 0 , the least energy solution has a spike near the boundary if λ λ * , and has an interior spike near the innermost part of the domain if λ > λ * . Central to our study is the corresponding problem on the half space.

How to cite

top

Berestycki, Henri, and Wei, Juncheng. "On singular perturbation problems with Robin boundary condition." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 199-230. <http://eudml.org/doc/84496>.

@article{Berestycki2003,
abstract = {We consider the following singularly perturbed elliptic problem\[ \begin\{aligned\} \epsilon ^2 \Delta u -u + f(u)&=0, \ u&gt;0 \ \text\{in\} \ \Omega ,\\ \epsilon \frac\{\partial u\}\{\partial \nu \} + \lambda u &=0 \ \text\{on\} \ \partial \Omega , \end\{aligned\} \]where $f$ satisfies some growth conditions, $ 0 \le \lambda \le +\infty $, and $\Omega \subset \mathbb \{R\}^N$ ($N&gt;1$) is a smooth and bounded domain. The cases $\lambda =0$ (Neumann problem) and $\lambda = +\infty $ (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant $\lambda _\{*\} &gt;1$ such that, as $\epsilon \rightarrow 0$, the least energy solution has a spike near the boundary if $\lambda \le \lambda _\{*\} $, and has an interior spike near the innermost part of the domain if $\lambda &gt; \lambda _\{*\} $. Central to our study is the corresponding problem on the half space.},
author = {Berestycki, Henri, Wei, Juncheng},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {199-230},
publisher = {Scuola normale superiore},
title = {On singular perturbation problems with Robin boundary condition},
url = {http://eudml.org/doc/84496},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Berestycki, Henri
AU - Wei, Juncheng
TI - On singular perturbation problems with Robin boundary condition
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 199
EP - 230
AB - We consider the following singularly perturbed elliptic problem\[ \begin{aligned} \epsilon ^2 \Delta u -u + f(u)&=0, \ u&gt;0 \ \text{in} \ \Omega ,\\ \epsilon \frac{\partial u}{\partial \nu } + \lambda u &=0 \ \text{on} \ \partial \Omega , \end{aligned} \]where $f$ satisfies some growth conditions, $ 0 \le \lambda \le +\infty $, and $\Omega \subset \mathbb {R}^N$ ($N&gt;1$) is a smooth and bounded domain. The cases $\lambda =0$ (Neumann problem) and $\lambda = +\infty $ (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant $\lambda _{*} &gt;1$ such that, as $\epsilon \rightarrow 0$, the least energy solution has a spike near the boundary if $\lambda \le \lambda _{*} $, and has an interior spike near the innermost part of the domain if $\lambda &gt; \lambda _{*} $. Central to our study is the corresponding problem on the half space.
LA - eng
UR - http://eudml.org/doc/84496
ER -

References

top
  1. [1] P. Bates – G. Fusco, Equilibria with many nuclei for the Cahn-Hilliard equation, J. Diff. Eqns. 160 (2000), 283-356. Zbl0990.35016MR1737000
  2. [2] P. Bates – E. N. Dancer – J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Diff. Eqns. 4 (1999), 1-69. Zbl1157.35407MR1667283
  3. [3] C. C. Chen – C. S. Lin, Uniqueness of the ground state solution of Δ u + f ( u ) = 0 in N , N 3 , Comm. PDE. 16 (1991), 1549-1572. Zbl0753.35034MR1132797
  4. [4] M. Del Pino – P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), 883-898. Zbl0932.35080MR1736974
  5. [5] M. Del Pino – P. Felmer – J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63-79. Zbl0942.35058MR1742305
  6. [6] M. Del Pino – P. Felmer – J. Wei, On the role of distance function in some singularly perturbed problems, Comm. PDE 25 (2000), 155-177. Zbl0949.35054MR1737546
  7. [7] A. Dillon – P. K. Maini – H. G. Othmer, Pattern formation in generalized Turing systems, I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol. 32 (1994), 345-393. Zbl0829.92001MR1279745
  8. [8] M. del Pino – P. Felmer – J. Wei, Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE 10 (2000), 119-134. Zbl0974.35041MR1750734
  9. [9] E. N. Dancer – J. Wei, On the location of spikes of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns. 157 (1999), 82-101. Zbl1087.35507MR1710015
  10. [10] E. N. Dancer – S. Yan, Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999), 241-262. Zbl0933.35070MR1696122
  11. [11] M. J. Esteban – P. L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14. Zbl0506.35035MR688279
  12. [12] R. Gardner – L. A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 53-72. Zbl0625.35030MR877892
  13. [13] C. Gui – J. Wei, Multiple interior spike solutions for some singular perturbed Neumann problems, J. Diff. Eqns. 158 (1999), 1-27. Zbl1061.35502MR1721719
  14. [14] C. Gui – J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000), 522-538. Zbl0949.35052MR1758231
  15. [15] C. Gui – J. Wei – M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 249-289. Zbl0944.35020MR1743431
  16. [16] B. Gidas – W.-M. Ni – L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R n , In: “Mathematical Analysis and Applications, Part A”, Adv. Math. Suppl. Studies 7A, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
  17. [17] M. Grossi – A. Pistoia – J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000) 143-175. Zbl0964.35047MR1782991
  18. [18] M. K. Kwong, Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal. 105 (1989), 243-266. Zbl0676.35032MR969899
  19. [19] Y.-Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998), 487-545. Zbl0898.35004MR1620632
  20. [20] Y.-Y. Li – L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445-1490. Zbl0933.35083MR1639159
  21. [21] P.L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, I., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145. Zbl0541.49009MR778970
  22. [22] P. L. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, II., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. Zbl0704.49004MR778974
  23. [23] P. L. Lions, “Generalized solutions of Hamilton-Jacobi equations”, Pitman, 1982. Zbl0497.35001MR667669
  24. [24] C.-S. Lin – W.-M. Ni – I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns. 72 (1988), 1-27. Zbl0676.35030MR929196
  25. [25] W.-M. Ni, Diffusion, cross-diffusion, and their spike- layer steady states, Notices of Amer. Math. Soc. 45 (1998), 9-18. Zbl0917.35047MR1490535
  26. [26] W.-M. Ni – I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991), 819-851. Zbl0754.35042MR1115095
  27. [27] W.-M. Ni – I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281. Zbl0796.35056MR1219814
  28. [28] W.-M. Ni – I. Takagi, Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math. 12 (1995), 327-365. Zbl0843.35006MR1337211
  29. [29] W.-M. Ni – I. Takagi – J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998), 597-618. Zbl0946.35007MR1639546
  30. [30] W.-M. Ni – J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768. Zbl0838.35009MR1342381
  31. [31] J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Diff. Eqns. 129 (1996), 315-333. Zbl0865.35011MR1404386
  32. [32] J. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns. 134 (1997), 104-133. Zbl0873.35007MR1429093
  33. [33] J. Wei, On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998), 159-178. Zbl0918.35024MR1622042
  34. [34] J. Wei, On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Diff. Int. Eqns. 13 (2000), 15-45. Zbl0970.35034MR1811947
  35. [35] J. Wei – M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 459-492. Zbl0910.35049MR1632937
  36. [36] J. Wei – M. Winter, Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), 585-606. Zbl0922.35025MR1709667

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.