Stationary solutions for the Cahn-Hilliard equation
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 4, page 459-492
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWei, Juncheng, and Winter, Matthias. "Stationary solutions for the Cahn-Hilliard equation." Annales de l'I.H.P. Analyse non linéaire 15.4 (1998): 459-492. <http://eudml.org/doc/78444>.
@article{Wei1998,
author = {Wei, Juncheng, Winter, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {phase transition; mean curvature of the boundary; spike-like stationary solution; Lyapunov-Schmidt reduction},
language = {eng},
number = {4},
pages = {459-492},
publisher = {Gauthier-Villars},
title = {Stationary solutions for the Cahn-Hilliard equation},
url = {http://eudml.org/doc/78444},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Wei, Juncheng
AU - Winter, Matthias
TI - Stationary solutions for the Cahn-Hilliard equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 4
SP - 459
EP - 492
LA - eng
KW - phase transition; mean curvature of the boundary; spike-like stationary solution; Lyapunov-Schmidt reduction
UR - http://eudml.org/doc/78444
ER -
References
top- [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Von Nostrand, Princeton, 1965. Zbl0142.37401MR178246
- [2] N. Alikakos, P.W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rat. Mech. Anal., Vol. 128, 1994, pp. 165-205. Zbl0828.35105MR1308851
- [3] N. Alikakos, P.W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Diff. Eqns., Vol. 90, 1991, pp. 81-134. Zbl0753.35042MR1094451
- [4] P.W. Bates and P.C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., Vol. 53, 1993, pp. 990-1008. Zbl0788.35061MR1232163
- [5] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., Vol. 28, 1958, pp. 258-267.
- [6] X. Chen and M. Kowalczyk, Existence of equilibria for the Cahn-Hilliad equation via local minimizers of the perimeter, preprint. Zbl0863.35009MR1399196
- [7] E.N. Dancer, A note on asymptotic uniqueness for some nonlinearities which change sign, preprint. MR1748710
- [8] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 1986, J. Funct. Anal., Vol. 69, pp. 397-408. Zbl0613.35076MR867665
- [9] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies Vol. 7A, pp. 369-402, Academic Press, New York, 1981. Zbl0469.35052
- [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983. Zbl0562.35001MR737190
- [11] M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 125, 1995, pp. 351-370. Zbl0828.34007MR1331565
- [12] B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. PDE, Vol. 9, 1984, pp. 337-408. Zbl0546.35053MR740094
- [13] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 111, 1989, pp. 69-84 Zbl0676.49011MR985990
- [14] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns., 1988, Vol. 72, pp. 1-27. Zbl0676.35030MR929196
- [15] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York/Heidelberg/Berlin, 1972. Zbl0223.35039MR350177
- [16] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Vol. 107, 1989, pp. 71-83. Zbl0681.49012MR1000224
- [17] W.-M. Ni, X. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 1992, Vol. 67, pp. 1-20. Zbl0785.35041MR1174600
- [18] W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 1991, Vol. 41, pp. 819-851. Zbl0754.35042MR1115095
- [19] W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., Vol. 70, 1993, pp. 247-281. Zbl0796.35056MR1219814
- [20] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., Vol. 48, 1995, pp. 731-768. Zbl0838.35009MR1342381
- [21] Y.G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, 1988, Comm. PDE, Vol. 13(12), pp. 1499-1519. Zbl0702.35228MR970154
- [22] Y.G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple-well potentials, 1990, Comm. Math. Phys., Vol. 131, pp. 223-253. Zbl0753.35097MR1065671
- [23] R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London A, Vol. 422, 1989, pp. 261-278. Zbl0701.35159MR997638
- [24] L.A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in Rn, Arch. Rational Mech. Anal., Vol. 81, 1983, pp. 181-197. Zbl0516.35031MR682268
Citations in EuDML Documents
top- Changfeng Gui, Juncheng Wei, Matthias Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems
- Franck Boyer, Nonhomogeneous Cahn–Hilliard fluids
- Kwangseok Choe, Namkwon Kim, Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation
- A. Malchiodi, Wei-Ming Ni, Juncheng Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball
- Olivier Rey, Juncheng Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II :
- Tai-Chia Lin, Juncheng Wei, Spikes in two coupled nonlinear Schrödinger equations
- Henri Berestycki, Juncheng Wei, On singular perturbation problems with Robin boundary condition
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.