Stationary solutions for the Cahn-Hilliard equation

Juncheng Wei; Matthias Winter

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 4, page 459-492
  • ISSN: 0294-1449

How to cite

top

Wei, Juncheng, and Winter, Matthias. "Stationary solutions for the Cahn-Hilliard equation." Annales de l'I.H.P. Analyse non linéaire 15.4 (1998): 459-492. <http://eudml.org/doc/78444>.

@article{Wei1998,
author = {Wei, Juncheng, Winter, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {phase transition; mean curvature of the boundary; spike-like stationary solution; Lyapunov-Schmidt reduction},
language = {eng},
number = {4},
pages = {459-492},
publisher = {Gauthier-Villars},
title = {Stationary solutions for the Cahn-Hilliard equation},
url = {http://eudml.org/doc/78444},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Wei, Juncheng
AU - Winter, Matthias
TI - Stationary solutions for the Cahn-Hilliard equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 4
SP - 459
EP - 492
LA - eng
KW - phase transition; mean curvature of the boundary; spike-like stationary solution; Lyapunov-Schmidt reduction
UR - http://eudml.org/doc/78444
ER -

References

top
  1. [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Von Nostrand, Princeton, 1965. Zbl0142.37401MR178246
  2. [2] N. Alikakos, P.W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rat. Mech. Anal., Vol. 128, 1994, pp. 165-205. Zbl0828.35105MR1308851
  3. [3] N. Alikakos, P.W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Diff. Eqns., Vol. 90, 1991, pp. 81-134. Zbl0753.35042MR1094451
  4. [4] P.W. Bates and P.C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., Vol. 53, 1993, pp. 990-1008. Zbl0788.35061MR1232163
  5. [5] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys., Vol. 28, 1958, pp. 258-267. 
  6. [6] X. Chen and M. Kowalczyk, Existence of equilibria for the Cahn-Hilliad equation via local minimizers of the perimeter, preprint. Zbl0863.35009MR1399196
  7. [7] E.N. Dancer, A note on asymptotic uniqueness for some nonlinearities which change sign, preprint. MR1748710
  8. [8] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, 1986, J. Funct. Anal., Vol. 69, pp. 397-408. Zbl0613.35076MR867665
  9. [9] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies Vol. 7A, pp. 369-402, Academic Press, New York, 1981. Zbl0469.35052
  10. [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983. Zbl0562.35001MR737190
  11. [11] M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 125, 1995, pp. 351-370. Zbl0828.34007MR1331565
  12. [12] B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. PDE, Vol. 9, 1984, pp. 337-408. Zbl0546.35053MR740094
  13. [13] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 111, 1989, pp. 69-84 Zbl0676.49011MR985990
  14. [14] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eqns., 1988, Vol. 72, pp. 1-27. Zbl0676.35030MR929196
  15. [15] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York/Heidelberg/Berlin, 1972. Zbl0223.35039MR350177
  16. [16] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Vol. 107, 1989, pp. 71-83. Zbl0681.49012MR1000224
  17. [17] W.-M. Ni, X. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 1992, Vol. 67, pp. 1-20. Zbl0785.35041MR1174600
  18. [18] W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 1991, Vol. 41, pp. 819-851. Zbl0754.35042MR1115095
  19. [19] W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J., Vol. 70, 1993, pp. 247-281. Zbl0796.35056MR1219814
  20. [20] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., Vol. 48, 1995, pp. 731-768. Zbl0838.35009MR1342381
  21. [21] Y.G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, 1988, Comm. PDE, Vol. 13(12), pp. 1499-1519. Zbl0702.35228MR970154
  22. [22] Y.G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple-well potentials, 1990, Comm. Math. Phys., Vol. 131, pp. 223-253. Zbl0753.35097MR1065671
  23. [23] R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London A, Vol. 422, 1989, pp. 261-278. Zbl0701.35159MR997638
  24. [24] L.A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in Rn, Arch. Rational Mech. Anal., Vol. 81, 1983, pp. 181-197. Zbl0516.35031MR682268

Citations in EuDML Documents

top
  1. Changfeng Gui, Juncheng Wei, Matthias Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems
  2. Franck Boyer, Nonhomogeneous Cahn–Hilliard fluids
  3. Kwangseok Choe, Namkwon Kim, Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation
  4. A. Malchiodi, Wei-Ming Ni, Juncheng Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball
  5. Olivier Rey, Juncheng Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : N 4
  6. Tai-Chia Lin, Juncheng Wei, Spikes in two coupled nonlinear Schrödinger equations
  7. Henri Berestycki, Juncheng Wei, On singular perturbation problems with Robin boundary condition

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.