Hölder a priori estimates for second order tangential operators on CR manifolds

Annamaria Montanari

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 2, page 345-378
  • ISSN: 0391-173X

Abstract

top
On a real hypersurface M in n + 1 of class C 2 , α we consider a local CR structure by choosing n complex vector fields W j in the complex tangent space. Their real and imaginary parts span a 2 n -dimensional subspace of the real tangent space, which has dimension 2 n + 1 . If the Levi matrix of M is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with C α coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators W j . In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.

How to cite

top

Montanari, Annamaria. "Hölder a priori estimates for second order tangential operators on CR manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (2003): 345-378. <http://eudml.org/doc/84504>.

@article{Montanari2003,
abstract = {On a real hypersurface $M$ in $\mathbb \{C\}^\{n+1\}$ of class $C^\{2,\alpha \}$ we consider a local CR structure by choosing $n$ complex vector fields $W_j$ in the complex tangent space. Their real and imaginary parts span a $2n$-dimensional subspace of the real tangent space, which has dimension $2n+1.$ If the Levi matrix of $M$ is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with $C^\alpha $ coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators $W_j.$ In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.},
author = {Montanari, Annamaria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {345-378},
publisher = {Scuola normale superiore},
title = {Hölder a priori estimates for second order tangential operators on CR manifolds},
url = {http://eudml.org/doc/84504},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Montanari, Annamaria
TI - Hölder a priori estimates for second order tangential operators on CR manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 345
EP - 378
AB - On a real hypersurface $M$ in $\mathbb {C}^{n+1}$ of class $C^{2,\alpha }$ we consider a local CR structure by choosing $n$ complex vector fields $W_j$ in the complex tangent space. Their real and imaginary parts span a $2n$-dimensional subspace of the real tangent space, which has dimension $2n+1.$ If the Levi matrix of $M$ is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with $C^\alpha $ coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators $W_j.$ In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.
LA - eng
UR - http://eudml.org/doc/84504
ER -

References

top
  1. [1] E. Bedford – B. Gaveau, Hypersurfaces with Bounded Levi Form, Indiana Univ. J. 27 n. 5 (1978), 867-873. Zbl0365.32011MR499287
  2. [2] L. Caffarelli – J. J. Kohn – L. Niremberg – J. Spruck, The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252. Zbl0598.35048MR780073
  3. [3] L. Capogna – D. Danielli – N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations., Am. J. Math. 118, n. 6 (1996), 1153-1196. Zbl0878.35020MR1420920
  4. [4] G. Citti, C regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup. di Pisa Cl. Sci., Serie 4 Vol. XXIII (1996), 483-529. Zbl0872.35018MR1440031
  5. [5] G. Citti, C regularity of solutions of the Levi equation, Ann. Inst. H. Poincare, Anal. non Linéaire 15 n. 4 (1998), 517-534. Zbl0921.35033MR1632929
  6. [6] G. Citti, Regularity of solutions of a nonlinear Hörmander type equation, Nonlinear Anal. 47 (2001), 479-489. Zbl1042.35517MR1970667
  7. [7] G. Citti – E. Lanconelli – A. Montanari, On the smoothness of viscosity solutions of the prescribed Levi-curvature equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 61-68. Zbl1010.35024MR1768190
  8. [8] G. Citti – E. Lanconelli – A. Montanari, Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math. 188 (2002), 87-128. Zbl1030.35084MR1947459
  9. [9] G. Citti – A. Montanari, Strong solutions for the Levi curvature equation, Adv. Differential Equations 5 (1-3) (2000), 323-342. Zbl1211.35112MR1734545
  10. [10] G. Citti – A. Montanari, Regularity properties of Levi flat graphs, C.R. Acad. Sci. Paris 329 n. 1 (1999), 1049-1054. Zbl0940.35053MR1735882
  11. [11] G. Citti – A. Montanari, Analytic estimates for solutions of the Levi equation, J. Differential Equations 173 (2001), 356-389. Zbl1098.35517MR1834119
  12. [12] G. Citti – A. Montanari, C regularity of solutions of an equation of Levi’s type in 2 n + 1 , Ann. Mat. Pura Appl. 180 (2001), 27-58. Zbl1030.35019MR1848050
  13. [13] G. Citti – A. Montanari, Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), 2819-2848. Zbl1008.35030MR1895205
  14. [14] J. P. D’Angelo, “Several Complex Variables and the Geometry of Real Hypersurfaces”, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1993. Zbl0854.32001MR1224231
  15. [15] G. B. Folland, Subelliptic estimates and functions spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026MR494315
  16. [16] G. B. Folland – E. M. Stein, Estimates for the ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 20 (1974), 429-522. Zbl0293.35012MR367477
  17. [17] D. Gilgarg – N. S. Trudinger, “Elliptic partial differential equations of second order”, Grundlehrer der Math. Wiss. Vol. 224, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
  18. [18] L. Hörmander, “An Introduction to Complex Analysis in Several Variables”, Von Nostrand, Princeton, NJ, 1966. Zbl0138.06203MR203075
  19. [19] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR222474
  20. [20] S. Krantz, “Function Theory of Several Complex Variables”, Wiley, New York, 1982. Zbl0471.32008MR635928
  21. [21] F. Lascialfari, A. Montanari, Smooth regularity for solutions of the Levi Monge-Ampère equation, to appear on Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 115-123. Zbl1097.35061MR1898454
  22. [22] A. Montanari – F. Lascialfari, The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions, preprint. Zbl1217.35082
  23. [23] A. Nagel – E. M. Stein – S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044MR793239
  24. [24] R. M. Range, “Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
  25. [25] L. P. Rothschild – E. M. Stein, Hypoelliptic differential operators on nilpotent groups, Acta Math. 137 (1977), 247-320. Zbl0346.35030MR436223
  26. [26] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. Zbl0582.58004MR762360
  27. [27] Z. Slodkowski – G. Tomassini, The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. Math. 116 (1994), 479-499. Zbl0802.35050MR1269612
  28. [28] Z. Slodkowski – G. Tomassini, Weak solutions for the Levi equation and Envelope of Holomorphy, J. Funct. Anal. 101, n. 4 (1991), 392-407. Zbl0744.35015MR1136942
  29. [29] E. M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton university Press, Princeton, New Jersey 1993. Zbl0821.42001MR1232192
  30. [30] G. Tomassini, Geometric Properties of Solutions of the Levi equation, Ann. Mat. Pura Appl. 152 (4) (1988), 331-344. Zbl0681.35017MR980986
  31. [31] C. J. Xu, Regularity for Quasilinear Second-Order Subelliptic Equations, Comm. Pure Appl. Math. 45 (1992), 77-96. Zbl0827.35023MR1135924

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.