Hölder a priori estimates for second order tangential operators on CR manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 2, page 345-378
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMontanari, Annamaria. "Hölder a priori estimates for second order tangential operators on CR manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (2003): 345-378. <http://eudml.org/doc/84504>.
@article{Montanari2003,
abstract = {On a real hypersurface $M$ in $\mathbb \{C\}^\{n+1\}$ of class $C^\{2,\alpha \}$ we consider a local CR structure by choosing $n$ complex vector fields $W_j$ in the complex tangent space. Their real and imaginary parts span a $2n$-dimensional subspace of the real tangent space, which has dimension $2n+1.$ If the Levi matrix of $M$ is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with $C^\alpha $ coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators $W_j.$ In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.},
author = {Montanari, Annamaria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {345-378},
publisher = {Scuola normale superiore},
title = {Hölder a priori estimates for second order tangential operators on CR manifolds},
url = {http://eudml.org/doc/84504},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Montanari, Annamaria
TI - Hölder a priori estimates for second order tangential operators on CR manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 345
EP - 378
AB - On a real hypersurface $M$ in $\mathbb {C}^{n+1}$ of class $C^{2,\alpha }$ we consider a local CR structure by choosing $n$ complex vector fields $W_j$ in the complex tangent space. Their real and imaginary parts span a $2n$-dimensional subspace of the real tangent space, which has dimension $2n+1.$ If the Levi matrix of $M$ is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations with $C^\alpha $ coefficients, which are not elliptic because they involve second-order differentiation only in the directions of the real and imaginary part of the tangential operators $W_j.$ In particular, our result applies to a class of fully nonlinear PDE’s naturally arising in the study of domains of holomorphy in the theory of holomorphic functions of several complex variables.
LA - eng
UR - http://eudml.org/doc/84504
ER -
References
top- [1] E. Bedford – B. Gaveau, Hypersurfaces with Bounded Levi Form, Indiana Univ. J. 27 n. 5 (1978), 867-873. Zbl0365.32011MR499287
- [2] L. Caffarelli – J. J. Kohn – L. Niremberg – J. Spruck, The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252. Zbl0598.35048MR780073
- [3] L. Capogna – D. Danielli – N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations., Am. J. Math. 118, n. 6 (1996), 1153-1196. Zbl0878.35020MR1420920
- [4] G. Citti, regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup. di Pisa Cl. Sci., Serie 4 Vol. XXIII (1996), 483-529. Zbl0872.35018MR1440031
- [5] G. Citti, regularity of solutions of the Levi equation, Ann. Inst. H. Poincare, Anal. non Linéaire 15 n. 4 (1998), 517-534. Zbl0921.35033MR1632929
- [6] G. Citti, Regularity of solutions of a nonlinear Hörmander type equation, Nonlinear Anal. 47 (2001), 479-489. Zbl1042.35517MR1970667
- [7] G. Citti – E. Lanconelli – A. Montanari, On the smoothness of viscosity solutions of the prescribed Levi-curvature equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), 61-68. Zbl1010.35024MR1768190
- [8] G. Citti – E. Lanconelli – A. Montanari, Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math. 188 (2002), 87-128. Zbl1030.35084MR1947459
- [9] G. Citti – A. Montanari, Strong solutions for the Levi curvature equation, Adv. Differential Equations 5 (1-3) (2000), 323-342. Zbl1211.35112MR1734545
- [10] G. Citti – A. Montanari, Regularity properties of Levi flat graphs, C.R. Acad. Sci. Paris 329 n. 1 (1999), 1049-1054. Zbl0940.35053MR1735882
- [11] G. Citti – A. Montanari, Analytic estimates for solutions of the Levi equation, J. Differential Equations 173 (2001), 356-389. Zbl1098.35517MR1834119
- [12] G. Citti – A. Montanari, regularity of solutions of an equation of Levi’s type in , Ann. Mat. Pura Appl. 180 (2001), 27-58. Zbl1030.35019MR1848050
- [13] G. Citti – A. Montanari, Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), 2819-2848. Zbl1008.35030MR1895205
- [14] J. P. D’Angelo, “Several Complex Variables and the Geometry of Real Hypersurfaces”, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1993. Zbl0854.32001MR1224231
- [15] G. B. Folland, Subelliptic estimates and functions spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026MR494315
- [16] G. B. Folland – E. M. Stein, Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 20 (1974), 429-522. Zbl0293.35012MR367477
- [17] D. Gilgarg – N. S. Trudinger, “Elliptic partial differential equations of second order”, Grundlehrer der Math. Wiss. Vol. 224, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
- [18] L. Hörmander, “An Introduction to Complex Analysis in Several Variables”, Von Nostrand, Princeton, NJ, 1966. Zbl0138.06203MR203075
- [19] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR222474
- [20] S. Krantz, “Function Theory of Several Complex Variables”, Wiley, New York, 1982. Zbl0471.32008MR635928
- [21] F. Lascialfari, A. Montanari, Smooth regularity for solutions of the Levi Monge-Ampère equation, to appear on Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 115-123. Zbl1097.35061MR1898454
- [22] A. Montanari – F. Lascialfari, The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions, preprint. Zbl1217.35082
- [23] A. Nagel – E. M. Stein – S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044MR793239
- [24] R. M. Range, “Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
- [25] L. P. Rothschild – E. M. Stein, Hypoelliptic differential operators on nilpotent groups, Acta Math. 137 (1977), 247-320. Zbl0346.35030MR436223
- [26] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. Zbl0582.58004MR762360
- [27] Z. Slodkowski – G. Tomassini, The Levi equation in higher dimension and relationships to the envelope of holomorphy, Amer. J. Math. 116 (1994), 479-499. Zbl0802.35050MR1269612
- [28] Z. Slodkowski – G. Tomassini, Weak solutions for the Levi equation and Envelope of Holomorphy, J. Funct. Anal. 101, n. 4 (1991), 392-407. Zbl0744.35015MR1136942
- [29] E. M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton university Press, Princeton, New Jersey 1993. Zbl0821.42001MR1232192
- [30] G. Tomassini, Geometric Properties of Solutions of the Levi equation, Ann. Mat. Pura Appl. 152 (4) (1988), 331-344. Zbl0681.35017MR980986
- [31] C. J. Xu, Regularity for Quasilinear Second-Order Subelliptic Equations, Comm. Pure Appl. Math. 45 (1992), 77-96. Zbl0827.35023MR1135924
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.