Smooth regularity for solutions of the Levi Monge-Ampère equation

Francesca Lascialfari; Annamaria Montanari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 2, page 115-123
  • ISSN: 1120-6330

Abstract

top
We present a smooth regularity result for strictly Levi convex solutions to the Levi Monge-Ampère equation. It is a fully nonlinear PDE which is degenerate elliptic. Hence elliptic techniques fail in this situation and we build a new theory in order to treat this new topic. Our technique is inspired to those introduced in [3] and [8] for the study of degenerate elliptic quasilinear PDE’s related to the Levi mean curvature equation. When the right hand side has the meaning of total curvature of a real hypersurface in C n + 1 , the Levi Monge-Ampère equation arises in the study of envelopes of holomorphy and has important applications in the theory of holomorphic functions of several complex variables.

How to cite

top

Lascialfari, Francesca, and Montanari, Annamaria. "Smooth regularity for solutions of the Levi Monge-Ampère equation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.2 (2001): 115-123. <http://eudml.org/doc/252425>.

@article{Lascialfari2001,
abstract = {We present a smooth regularity result for strictly Levi convex solutions to the Levi Monge-Ampère equation. It is a fully nonlinear PDE which is degenerate elliptic. Hence elliptic techniques fail in this situation and we build a new theory in order to treat this new topic. Our technique is inspired to those introduced in [3] and [8] for the study of degenerate elliptic quasilinear PDE’s related to the Levi mean curvature equation. When the right hand side has the meaning of total curvature of a real hypersurface in $\mathbb\{C\}^\{n+1\}$, the Levi Monge-Ampère equation arises in the study of envelopes of holomorphy and has important applications in the theory of holomorphic functions of several complex variables.},
author = {Lascialfari, Francesca, Montanari, Annamaria},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Levi Monge-Ampère equation; Fully nonlinear degenerate elliptic PDE; Non-linear vector fields; Schauder-type estimate; Smooth regularity of strictly Levi convex solutions; fully nonlinear degenerate elliptic PDE; nonlinear vector fields; smooth regularity of strictly Levi convex solutions},
language = {eng},
month = {6},
number = {2},
pages = {115-123},
publisher = {Accademia Nazionale dei Lincei},
title = {Smooth regularity for solutions of the Levi Monge-Ampère equation},
url = {http://eudml.org/doc/252425},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Lascialfari, Francesca
AU - Montanari, Annamaria
TI - Smooth regularity for solutions of the Levi Monge-Ampère equation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/6//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 2
SP - 115
EP - 123
AB - We present a smooth regularity result for strictly Levi convex solutions to the Levi Monge-Ampère equation. It is a fully nonlinear PDE which is degenerate elliptic. Hence elliptic techniques fail in this situation and we build a new theory in order to treat this new topic. Our technique is inspired to those introduced in [3] and [8] for the study of degenerate elliptic quasilinear PDE’s related to the Levi mean curvature equation. When the right hand side has the meaning of total curvature of a real hypersurface in $\mathbb{C}^{n+1}$, the Levi Monge-Ampère equation arises in the study of envelopes of holomorphy and has important applications in the theory of holomorphic functions of several complex variables.
LA - eng
KW - Levi Monge-Ampère equation; Fully nonlinear degenerate elliptic PDE; Non-linear vector fields; Schauder-type estimate; Smooth regularity of strictly Levi convex solutions; fully nonlinear degenerate elliptic PDE; nonlinear vector fields; smooth regularity of strictly Levi convex solutions
UR - http://eudml.org/doc/252425
ER -

References

top
  1. Blocki, Z., On the regularity of the Complex Monge-Ampère operator. In: Kang-Tae Kim - S.G. Krantz (eds.), Complex geometric analysis in Pohang. POSTECH-BSRI SNU-GARC, International conference on Several complex variables (Pohang, Korea, June 23–27, 1997). Providence, RI: American Mathematical Society, Contemp. Math., 222, 1999, 181-189. Zbl0937.32017MR1653050DOI10.1090/conm/222/03161
  2. Caffarelli, L. - Kohn, J.J. - Nirenberg, L. - Spruck, J., The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations. Comm. Pure Appl. Math., 38, 1985, 209-252. Zbl0598.35048MR780073DOI10.1002/cpa.3160380206
  3. Citti, G., C regularity of solutions of a quasilinear equation related to the Levi operator. Ann. Scuola Norm. Sup. di Pisa Cl. Sci., s. 4, v. XXIII, 1996, 483-529. Zbl0872.35018MR1440031
  4. Citti, G., C regularity of solutions of the Levi equation. Ann. Inst. H. Poincaré, Anal. non Linéaire, 15, 4, 1998, 517-534. Zbl0921.35033MR1632929DOI10.1016/S0294-1449(98)80033-4
  5. Citti, G. - Lanconelli, E. - Montanari, A., On the smoothness of viscosity solutions of the prescribed Levi-curvature equation. Rend. Mat. Acc. Lincei, s. 9, v. 10, 1999, 61-68. Zbl1010.35024MR1768190
  6. Citti, G. - Montanari, A., Strong solutions for the Levi curvature equation. Adv. in Diff. Eq., v. 5, 1-3, 2000, 323-342. Zbl1211.35112MR1734545
  7. Citti, G. - Montanari, A., Regularity properties of Levi flat graphs. C.R. Acad. Sci. Paris, t. 329, s. 1, 1999, 1049-1054. Zbl0940.35053MR1735882DOI10.1016/S0764-4442(00)88472-4
  8. Citti, G. - Montanari, A., C regularity of solutions of an equation of Levi’s type in R 2 n + 1 . Ann. Mat. Pura Appl., to appear. Zbl1030.35019MR1848050DOI10.1007/s10231-001-8196-z
  9. Citti, G. - Montanari, A., Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations. Preprint. Zbl1008.35030MR1895205DOI10.1090/S0002-9947-02-02928-8
  10. Gilgarg, D. - Trudinger, N.S., Elliptic partial differential equations of second order. Grundlehrer der Math. Wiss., vol. 224, Springer-Verlag, New York1977. Zbl0361.35003MR473443
  11. Nagel, A. - Stein, E.M. - Wainger, S., Balls and metrics defined by vector fields I: basic properties. Acta Math., 155, 1985, 103-147. Zbl0578.32044MR793239DOI10.1007/BF02392539
  12. Slodkowski, Z. - Tomassini, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy. American Journal of Mathematics, 116, 1994, 479-499. Zbl0802.35050MR1269612DOI10.2307/2374937
  13. Slodkowski, Z. - Tomassini, G., Weak solutions for the Levi equation and Envelope of Holomorphy. J. Funct. Anal., 101, n. 4, 1991, 392-407. Zbl0744.35015MR1136942DOI10.1016/0022-1236(91)90164-Z
  14. Tomassini, G., Geometric Properties of Solutions of the Levi equation. Ann. Mat. Pura Appl., 4, 152, 1988, 331-344. Zbl0681.35017MR980986DOI10.1007/BF01766155
  15. Xu, C.J., Regularity for Quasilinear Second-Order Subelliptic Equations. Comm. Pure and Appl. Math., 45, 1992, 77-96. Zbl0827.35023MR1135924DOI10.1002/cpa.3160450104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.