Hörmander systems and harmonic morphisms
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 2, page 379-394
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBarletta, Elisabetta. "Hörmander systems and harmonic morphisms." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (2003): 379-394. <http://eudml.org/doc/84505>.
@article{Barletta2003,
abstract = {Given a Hörmander system $X = \lbrace X_1 , \cdots , X_m \rbrace $ on a domain $\Omega \subseteq \{\bf R\}^n$ we show that any subelliptic harmonic morphism $\phi $ from $\Omega $ into a $\nu $-dimensional riemannian manifold $N$ is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also $\phi $ is a submersion provided that $\nu \le m$ and $X$ has rank $m$. If $\Omega = \{\bf H\}_n$ (the Heisenberg group) and $X = \left\lbrace \frac\{1\}\{2\}\left( L_\alpha + L_\{\overline\{\alpha \}\}\right) , \frac\{1\}\{2i\}\left( L_\alpha - L_\{\overline\{\alpha \}\}\right)\right\rbrace $, where $L_\{\overline\{\alpha \}\} = \partial /\partial \overline\{z\}^\alpha - i z^\alpha \partial /\partial t$ is the Lewy operator, then a smooth map $\phi : \Omega \rightarrow N$ is a subelliptic harmonic morphism if and only if $\phi \circ \pi : (C(\{\bf H\}_n ) , F_\{\theta _0\} ) \rightarrow N$ is a harmonic morphism, where $S^1 \rightarrow C(\{\bf H\}_n ) \overset\{\pi \}\{\rightarrow \}\{\rightarrow \} \{\bf H\}_n$ is the canonical circle bundle and $F_\{\theta _0\}$ is the Fefferman metric of $(\{\bf H\}_n , \theta _0 )$. For any $S^1$-invariant weak solution to the harmonic map equation on $(C(\{\bf H\}_n ) , F_\{\theta _0\})$ the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from $(C(\lbrace x_1 > 0 \rbrace ), F_\{\theta (k)\})$ into a riemannian manifold, where $F_\{\theta (k)\}$ is the Fefferman metric associated to the system of vector fields $X_1 =\partial /\partial x_1 , X_2 = \partial /\partial x_2 + x_1^k \; \partial /\partial x_3$$\; (k \ge 1)$ on $\Omega = \{\bf R\}^3 \setminus \lbrace x_1 = 0 \rbrace $.},
author = {Barletta, Elisabetta},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {379-394},
publisher = {Scuola normale superiore},
title = {Hörmander systems and harmonic morphisms},
url = {http://eudml.org/doc/84505},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Barletta, Elisabetta
TI - Hörmander systems and harmonic morphisms
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 379
EP - 394
AB - Given a Hörmander system $X = \lbrace X_1 , \cdots , X_m \rbrace $ on a domain $\Omega \subseteq {\bf R}^n$ we show that any subelliptic harmonic morphism $\phi $ from $\Omega $ into a $\nu $-dimensional riemannian manifold $N$ is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also $\phi $ is a submersion provided that $\nu \le m$ and $X$ has rank $m$. If $\Omega = {\bf H}_n$ (the Heisenberg group) and $X = \left\lbrace \frac{1}{2}\left( L_\alpha + L_{\overline{\alpha }}\right) , \frac{1}{2i}\left( L_\alpha - L_{\overline{\alpha }}\right)\right\rbrace $, where $L_{\overline{\alpha }} = \partial /\partial \overline{z}^\alpha - i z^\alpha \partial /\partial t$ is the Lewy operator, then a smooth map $\phi : \Omega \rightarrow N$ is a subelliptic harmonic morphism if and only if $\phi \circ \pi : (C({\bf H}_n ) , F_{\theta _0} ) \rightarrow N$ is a harmonic morphism, where $S^1 \rightarrow C({\bf H}_n ) \overset{\pi }{\rightarrow }{\rightarrow } {\bf H}_n$ is the canonical circle bundle and $F_{\theta _0}$ is the Fefferman metric of $({\bf H}_n , \theta _0 )$. For any $S^1$-invariant weak solution to the harmonic map equation on $(C({\bf H}_n ) , F_{\theta _0})$ the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from $(C(\lbrace x_1 > 0 \rbrace ), F_{\theta (k)})$ into a riemannian manifold, where $F_{\theta (k)}$ is the Fefferman metric associated to the system of vector fields $X_1 =\partial /\partial x_1 , X_2 = \partial /\partial x_2 + x_1^k \; \partial /\partial x_3$$\; (k \ge 1)$ on $\Omega = {\bf R}^3 \setminus \lbrace x_1 = 0 \rbrace $.
LA - eng
UR - http://eudml.org/doc/84505
ER -
References
top- [1] E. Barletta – S. Dragomir – H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2) (2001), 719-746. Zbl1033.32022MR1871387
- [2] E. Barletta – S. Dragomir, Differential equations on contact Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 30 (2001), 63-95. Zbl1008.53022MR1882025
- [3] A. Besse, “Einstein manifolds”, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1987. Zbl0613.53001MR867684
- [4] S. Dragomir, A survey of pseudohermitian geometry, Proceedings of the Workshop on Differential Geometry and Topology (Palermo 1996), Rend. Circ. Mat. Palermo Suppl. 49 (2) (1997), 101-112. Zbl0902.32003MR1602975
- [5] B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 21 (2) (1996), 31-50. Zbl0847.53013MR1375504
- [6] S. Helgason, “Groups and geometric analysis”, Academic Press Inc., New York, London, Tokyo, 1984. Zbl0543.58001MR754767
- [7] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (2) (1979), 215-229. Zbl0421.31006MR545705
- [8] J. Jost, “Riemannian geometry and geometric analysis”, Springer, Berlin-Heidelberg, 2002 (third edition). Zbl1034.53001MR1871261
- [9] J. Jost – C-J. Xu, Subelliptic harmonic maps, Trans. Amer. Math. Soc. 350 (11) (1998), 4633-4649. Zbl0980.35051MR1433120
- [10] J.M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1) (1986), 411-429. Zbl0595.32026MR837820
- [11] N. Tanaka, “A differential geometric study on strongly pseudo-convex manifolds”, Kinokuniya Book Store Co., Ltd., Kyoto, 1975. Zbl0331.53025MR399517
- [12] S.M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry 13 (1978), 25-41. Zbl0379.53016MR520599
- [13] J.C. Wood, Harmonic morphisms, foliations and Gauss maps, Contemp. Math. 49 (1986), 145-184. Zbl0592.53020MR833811
- [14] C-J. Xu – C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var. Partial Differential Equations 5 (4) (1997), 323-343. Zbl0902.35019MR1450714
- [15] Z-R. Zhou, Uniqueness of subelliptic harmonic maps, Ann. Global Anal. Geom. 17 (6) (1999), 581-594. Zbl0948.58009MR1728089
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.