Hörmander systems and harmonic morphisms

Elisabetta Barletta

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 2, page 379-394
  • ISSN: 0391-173X

Abstract

top
Given a Hörmander system X = { X 1 , , X m } on a domain Ω 𝐑 n we show that any subelliptic harmonic morphism φ from Ω into a ν -dimensional riemannian manifold N is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also φ is a submersion provided that ν m and X has rank m . If Ω = 𝐇 n (the Heisenberg group) and X = 1 2 L α + L α ¯ , 1 2 i L α - L α ¯ , where L α ¯ = / z ¯ α - i z α / t is the Lewy operator, then a smooth map φ : Ω N is a subelliptic harmonic morphism if and only if φ π : ( C ( 𝐇 n ) , F θ 0 ) N is a harmonic morphism, where S 1 C ( 𝐇 n ) π 𝐇 n is the canonical circle bundle and F θ 0 is the Fefferman metric of ( 𝐇 n , θ 0 ) . For any S 1 -invariant weak solution to the harmonic map equation on ( C ( 𝐇 n ) , F θ 0 ) the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from ( C ( { x 1 > 0 } ) , F θ ( k ) ) into a riemannian manifold, where F θ ( k ) is the Fefferman metric associated to the system of vector fields X 1 = / x 1 , X 2 = / x 2 + x 1 k / x 3 ( k 1 ) on Ω = 𝐑 3 { x 1 = 0 } .

How to cite

top

Barletta, Elisabetta. "Hörmander systems and harmonic morphisms." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (2003): 379-394. <http://eudml.org/doc/84505>.

@article{Barletta2003,
abstract = {Given a Hörmander system $X = \lbrace X_1 , \cdots , X_m \rbrace $ on a domain $\Omega \subseteq \{\bf R\}^n$ we show that any subelliptic harmonic morphism $\phi $ from $\Omega $ into a $\nu $-dimensional riemannian manifold $N$ is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also $\phi $ is a submersion provided that $\nu \le m$ and $X$ has rank $m$. If $\Omega = \{\bf H\}_n$ (the Heisenberg group) and $X = \left\lbrace \frac\{1\}\{2\}\left( L_\alpha + L_\{\overline\{\alpha \}\}\right) , \frac\{1\}\{2i\}\left( L_\alpha - L_\{\overline\{\alpha \}\}\right)\right\rbrace $, where $L_\{\overline\{\alpha \}\} = \partial /\partial \overline\{z\}^\alpha - i z^\alpha \partial /\partial t$ is the Lewy operator, then a smooth map $\phi : \Omega \rightarrow N$ is a subelliptic harmonic morphism if and only if $\phi \circ \pi : (C(\{\bf H\}_n ) , F_\{\theta _0\} ) \rightarrow N$ is a harmonic morphism, where $S^1 \rightarrow C(\{\bf H\}_n ) \overset\{\pi \}\{\rightarrow \}\{\rightarrow \} \{\bf H\}_n$ is the canonical circle bundle and $F_\{\theta _0\}$ is the Fefferman metric of $(\{\bf H\}_n , \theta _0 )$. For any $S^1$-invariant weak solution to the harmonic map equation on $(C(\{\bf H\}_n ) , F_\{\theta _0\})$ the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from $(C(\lbrace x_1 &gt; 0 \rbrace ), F_\{\theta (k)\})$ into a riemannian manifold, where $F_\{\theta (k)\}$ is the Fefferman metric associated to the system of vector fields $X_1 =\partial /\partial x_1 , X_2 = \partial /\partial x_2 + x_1^k \; \partial /\partial x_3$$\; (k \ge 1)$ on $\Omega = \{\bf R\}^3 \setminus \lbrace x_1 = 0 \rbrace $.},
author = {Barletta, Elisabetta},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {379-394},
publisher = {Scuola normale superiore},
title = {Hörmander systems and harmonic morphisms},
url = {http://eudml.org/doc/84505},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Barletta, Elisabetta
TI - Hörmander systems and harmonic morphisms
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 379
EP - 394
AB - Given a Hörmander system $X = \lbrace X_1 , \cdots , X_m \rbrace $ on a domain $\Omega \subseteq {\bf R}^n$ we show that any subelliptic harmonic morphism $\phi $ from $\Omega $ into a $\nu $-dimensional riemannian manifold $N$ is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also $\phi $ is a submersion provided that $\nu \le m$ and $X$ has rank $m$. If $\Omega = {\bf H}_n$ (the Heisenberg group) and $X = \left\lbrace \frac{1}{2}\left( L_\alpha + L_{\overline{\alpha }}\right) , \frac{1}{2i}\left( L_\alpha - L_{\overline{\alpha }}\right)\right\rbrace $, where $L_{\overline{\alpha }} = \partial /\partial \overline{z}^\alpha - i z^\alpha \partial /\partial t$ is the Lewy operator, then a smooth map $\phi : \Omega \rightarrow N$ is a subelliptic harmonic morphism if and only if $\phi \circ \pi : (C({\bf H}_n ) , F_{\theta _0} ) \rightarrow N$ is a harmonic morphism, where $S^1 \rightarrow C({\bf H}_n ) \overset{\pi }{\rightarrow }{\rightarrow } {\bf H}_n$ is the canonical circle bundle and $F_{\theta _0}$ is the Fefferman metric of $({\bf H}_n , \theta _0 )$. For any $S^1$-invariant weak solution to the harmonic map equation on $(C({\bf H}_n ) , F_{\theta _0})$ the corresponding base map is shown to be a weak subelliptic harmonic map. We obtain a regularity result for weak harmonic morphisms from $(C(\lbrace x_1 &gt; 0 \rbrace ), F_{\theta (k)})$ into a riemannian manifold, where $F_{\theta (k)}$ is the Fefferman metric associated to the system of vector fields $X_1 =\partial /\partial x_1 , X_2 = \partial /\partial x_2 + x_1^k \; \partial /\partial x_3$$\; (k \ge 1)$ on $\Omega = {\bf R}^3 \setminus \lbrace x_1 = 0 \rbrace $.
LA - eng
UR - http://eudml.org/doc/84505
ER -

References

top
  1. [1] E. Barletta – S. Dragomir – H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2) (2001), 719-746. Zbl1033.32022MR1871387
  2. [2] E. Barletta – S. Dragomir, Differential equations on contact Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 30 (2001), 63-95. Zbl1008.53022MR1882025
  3. [3] A. Besse, “Einstein manifolds”, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1987. Zbl0613.53001MR867684
  4. [4] S. Dragomir, A survey of pseudohermitian geometry, Proceedings of the Workshop on Differential Geometry and Topology (Palermo 1996), Rend. Circ. Mat. Palermo Suppl. 49 (2) (1997), 101-112. Zbl0902.32003MR1602975
  5. [5] B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 21 (2) (1996), 31-50. Zbl0847.53013MR1375504
  6. [6] S. Helgason, “Groups and geometric analysis”, Academic Press Inc., New York, London, Tokyo, 1984. Zbl0543.58001MR754767
  7. [7] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (2) (1979), 215-229. Zbl0421.31006MR545705
  8. [8] J. Jost, “Riemannian geometry and geometric analysis”, Springer, Berlin-Heidelberg, 2002 (third edition). Zbl1034.53001MR1871261
  9. [9] J. Jost – C-J. Xu, Subelliptic harmonic maps, Trans. Amer. Math. Soc. 350 (11) (1998), 4633-4649. Zbl0980.35051MR1433120
  10. [10] J.M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1) (1986), 411-429. Zbl0595.32026MR837820
  11. [11] N. Tanaka, “A differential geometric study on strongly pseudo-convex manifolds”, Kinokuniya Book Store Co., Ltd., Kyoto, 1975. Zbl0331.53025MR399517
  12. [12] S.M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry 13 (1978), 25-41. Zbl0379.53016MR520599
  13. [13] J.C. Wood, Harmonic morphisms, foliations and Gauss maps, Contemp. Math. 49 (1986), 145-184. Zbl0592.53020MR833811
  14. [14] C-J. Xu – C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var. Partial Differential Equations 5 (4) (1997), 323-343. Zbl0902.35019MR1450714
  15. [15] Z-R. Zhou, Uniqueness of subelliptic harmonic maps, Ann. Global Anal. Geom. 17 (6) (1999), 581-594. Zbl0948.58009MR1728089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.