Differential equations on contact riemannian manifolds
Elisabetta Barletta; Sorin Dragomir
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 1, page 63-95
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBarletta, Elisabetta, and Dragomir, Sorin. "Differential equations on contact riemannian manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 63-95. <http://eudml.org/doc/84439>.
@article{Barletta2001,
author = {Barletta, Elisabetta, Dragomir, Sorin},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {contact manifolds},
language = {eng},
number = {1},
pages = {63-95},
publisher = {Scuola normale superiore},
title = {Differential equations on contact riemannian manifolds},
url = {http://eudml.org/doc/84439},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Barletta, Elisabetta
AU - Dragomir, Sorin
TI - Differential equations on contact riemannian manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 63
EP - 95
LA - eng
KW - contact manifolds
UR - http://eudml.org/doc/84439
ER -
References
top- [1] E. Barletta - S. Dragomir, On the CR structure of the tangent sphere bundle, Le MatematicheL (1995), 237-249. Zbl0911.32030MR1414632
- [2] E. Barletta - S. Dragomir, Pseudohermitian immersions, pseudo-Einstein structures, and the Lee class of a CR manifold, Kodai Math. J, 19 (1996), 62-86. Zbl0861.32004MR1374463
- [3] E. Barletta - S. Dragomir, New CR invariants and their application to the CR equivalence problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 193-203. Zbl0904.32006MR1475776
- [4] E. Barletta - S. Dragomir, On the spectrum of a strictly pseudoconvex CR manifold, Abh. Math. Sem. Univ. Hamburg67 (1997), 33-46. Zbl0897.32010MR1481525
- [5] E. Barletta - S. Dragomir - H. Urakawa, Pseudoharmonic mapsfrom nondegenerate CR manifolds to Riemannian manifolds, to appear in Indiana Univ. Math. J., 2001. Zbl1033.32022MR1871387
- [6] D.E. Blair, Contact Manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976. Zbl0319.53026MR467588
- [7] S. Dragomir, On a conjecture of J.M. Lee, Hokkaido Math. J.23 (1994), 35-49. Zbl0797.53036MR1263822
- [8] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, American J. Math.117 (1995), 169-202. Zbl0827.32020MR1314462
- [9] S. Dragomir, Pseudohermitian geometry and interpolation manifolds, Complex Variables27 (1995), 105-115. Zbl0853.32020MR1323717
- [10] S. Dragomir - L. Ornea, "Locally Conformal Kähler Geometry", Progress in Mathem., vol. 155, Birkhäuser, 1998. Zbl0887.53001MR1481969
- [11] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math.103 (1976), 396-416; correction, 104 (1976), 393-394; F. Farris, An intrinsic construction of Fefferman's CR metric, Pacific J. Math.123 (1986), 33-45. MR407321
- [12] M. Ferraris - M. Franca Viglia - I. Volovich, A model of affine gravity in two dimensions and plurality of topology, Istituto di Fisica Matematica "J.L. Lagrange", Università di Torino, preprint, 1998; The universality of Einstein equations, ibidem, preprint, 1998. MR1482663
- [13] S. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1968), 275-314. Zbl0159.37502MR237816
- [14] A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations (2) 10 (1985), 191-217. Zbl0563.58034MR777049
- [15] S. Ianus, Sulle varietà di Cauchy-Riemann, Rend. Accad. Sci. Fis. Mat. Napoli (4) 39 (1972), 191-195. MR343204
- [16] D. Jerison - J.M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197. Zbl0661.32026MR880182
- [17] D. Jerison - J.M. Lee, CR normal coordinates and the Yamabe problem, J. Differential Geom. 29 (1989), 303-344. Zbl0671.32016MR982177
- [18] D. Jerison - A. Sánchez-Calle, Subelliptic, second order differential operators, In: "Complex Analysis III", Proceedings, University of Maryland 1985-86, Lecture Notes in Math., vol. 1277, Springer-Verlag, 1987, pp. 46-77. Zbl0634.35017MR922334
- [19] J.J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. Zbl0125.33302MR181815
- [20] J.J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis Minneapolis, 1964, Springer-Verlag, New York, 1965, pp. 81-94. Zbl0166.36003MR175149
- [21] J.M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. (1) 296 (1986), 411-429. Zbl0595.32026MR837820
- [22] J.M. Lee, Pseudo-Einstein structures on CR manifolds, American J. Math. 110 (1988), 157-178. Zbl0638.32019MR926742
- [23] A. Menikoff - J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann.235 (1978), 55-58. Zbl0375.35014MR481627
- [24] M. Okumura, Certain almost contact hypersurfaces in Euclidean spaces, Kodai Math. Sem. Reports, 16 (1964), 44-54; Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, Tôhoku Math. J.16 (1964), 270-284; Contact hypersurfaces in certain Kaehlerian manifolds, ibidem, 18 (1966), 74-102; S.I. Goldberg, Totally geodesic hypersurfaces of Kähler manifolds, Pacific J. Math., 27 (1968), 275-281. Zbl0126.38101MR162199
- [25] E.V. Radkevic, Hypoelliptic operators with multiple characteristics, Math. USSR Sb.8 (1969), 181-205. Zbl0207.09401MR261144
- [26] D.E. Blair - D. Perrone, A variational characterization of contact metric manifolds with vanishing torsion, Canad. Math. Bull. (4) 35 (1992), 455-462; Second variation of the "total scalar curvature " on contact manifolds, ibidem, (1) 38 (1995), 16-22; S.I. Goldberg - D. Perrone - G. Toth, Contact three-manifolds with positive generalized Tanaka-Webster scalar curvature, C.R. Math. Rep. Acad. Sci. Canada, (6) 10 (1988), 255-260; S.I. Goldberg - D. Perrone, Contact 3-manifolds with positive scalar curvature, Contemporary Math. 127 (1992), 59-68; D. Perrone, 5-Dimensional contact manifolds with second Betti number b2 = 0, Tôhoku Math. J. (1) 41 (1989), 163-170; A remark on homogeneous contact five-manifolds, Boll. Un. Mat. Ital. (B) (7) 3-A (1989), 231-235; Torsion and critical metrics on contact three-manifolds, Kodai Math. J. (1) 13 (1990), 88-100; Torsion tensor and critical metrics on contact (2n + 1)-manifolds, Monats. Math. 114 (1992), 245-259; Contact Riemannian manifolds satisfying R (X, ξ) · R = 0, Yokohama Math. J.39 (1992), 141-149; Tangent sphere bundles satisfying Δξτ = 0, Journal of Geometry49 (1994), 178-188; Ricci tensor and spectral rigidity of contact Riemannian 3-manifolds, Bull. Inst. Math. Acad. Sinica, (2) 24 (1996), 127-138; D. Perrone - L. Vanhecke, Five-dimensional homogeneous contact manifolds and related problems, Tôhoku Math. J. (2) 43 (1991), 243-248.
- [27] N. Tanaka, "A Differential Geometric Study on Strongly Pseudo-Convex Manifolds ", Kinokuniya Book Store Co., Kyoto, 1975. Zbl0331.53025MR399517
- [28] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. (1) 314 (1989), 349-379. Zbl0677.53043MR1000553
- [29] H. Urakawa, Yang-Mills connections over compact strongly pseudoconvex CR manifolds, Math. Z.216 (1994), 541-573. Zbl0815.32008MR1288045
- [30] H. Urakawa, Variational problems over strongly pseudoconvex CR manifolds, In: "Differential Geometry", Proceedings of the Symposium in honour of professor Su Buchin on his 90th birthday, Shanghai China, September 17-23, 1991, C. H. Gu - H. S. Hu - Y. L. Xin (eds.), (Fundan University), World Scientific Publ. Co. Pte. Ltd., Singapore-New Jersey- London-Hong Kong, 1993, pp. 233-242. Zbl0785.53056MR1341616
- [31] I. Vaisman, New examples of twisted cohomologies, Boll. Un. Mat. Ital. (B) 7 (1993), 355-368. Zbl0781.53029MR1223646
- [32] S. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geom.13 (1978), 25-41. Zbl0379.53016MR520599
- [33] S. Webster, On the transformation group of a real hypersurface, Trans. Amer. Math. Soc. (1) 231 (1977), 179-190. Zbl0368.57013MR481085
- [34] S. Webster, The rigidity of CR hypersurfaces in a sphere, Indiana Univ. Math. J. (3) 28 (1979), 405-416. Zbl0387.53020MR529673
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.