Differential equations on contact riemannian manifolds

Elisabetta Barletta; Sorin Dragomir

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 63-95
  • ISSN: 0391-173X

How to cite

top

Barletta, Elisabetta, and Dragomir, Sorin. "Differential equations on contact riemannian manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 63-95. <http://eudml.org/doc/84439>.

@article{Barletta2001,
author = {Barletta, Elisabetta, Dragomir, Sorin},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {contact manifolds},
language = {eng},
number = {1},
pages = {63-95},
publisher = {Scuola normale superiore},
title = {Differential equations on contact riemannian manifolds},
url = {http://eudml.org/doc/84439},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Barletta, Elisabetta
AU - Dragomir, Sorin
TI - Differential equations on contact riemannian manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 63
EP - 95
LA - eng
KW - contact manifolds
UR - http://eudml.org/doc/84439
ER -

References

top
  1. [1] E. Barletta - S. Dragomir, On the CR structure of the tangent sphere bundle, Le MatematicheL (1995), 237-249. Zbl0911.32030MR1414632
  2. [2] E. Barletta - S. Dragomir, Pseudohermitian immersions, pseudo-Einstein structures, and the Lee class of a CR manifold, Kodai Math. J, 19 (1996), 62-86. Zbl0861.32004MR1374463
  3. [3] E. Barletta - S. Dragomir, New CR invariants and their application to the CR equivalence problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 193-203. Zbl0904.32006MR1475776
  4. [4] E. Barletta - S. Dragomir, On the spectrum of a strictly pseudoconvex CR manifold, Abh. Math. Sem. Univ. Hamburg67 (1997), 33-46. Zbl0897.32010MR1481525
  5. [5] E. Barletta - S. Dragomir - H. Urakawa, Pseudoharmonic mapsfrom nondegenerate CR manifolds to Riemannian manifolds, to appear in Indiana Univ. Math. J., 2001. Zbl1033.32022MR1871387
  6. [6] D.E. Blair, Contact Manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976. Zbl0319.53026MR467588
  7. [7] S. Dragomir, On a conjecture of J.M. Lee, Hokkaido Math. J.23 (1994), 35-49. Zbl0797.53036MR1263822
  8. [8] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, American J. Math.117 (1995), 169-202. Zbl0827.32020MR1314462
  9. [9] S. Dragomir, Pseudohermitian geometry and interpolation manifolds, Complex Variables27 (1995), 105-115. Zbl0853.32020MR1323717
  10. [10] S. Dragomir - L. Ornea, "Locally Conformal Kähler Geometry", Progress in Mathem., vol. 155, Birkhäuser, 1998. Zbl0887.53001MR1481969
  11. [11] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math.103 (1976), 396-416; correction, 104 (1976), 393-394; F. Farris, An intrinsic construction of Fefferman's CR metric, Pacific J. Math.123 (1986), 33-45. MR407321
  12. [12] M. Ferraris - M. Franca Viglia - I. Volovich, A model of affine gravity in two dimensions and plurality of topology, Istituto di Fisica Matematica "J.L. Lagrange", Università di Torino, preprint, 1998; The universality of Einstein equations, ibidem, preprint, 1998. MR1482663
  13. [13] S. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1968), 275-314. Zbl0159.37502MR237816
  14. [14] A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations (2) 10 (1985), 191-217. Zbl0563.58034MR777049
  15. [15] S. Ianus, Sulle varietà di Cauchy-Riemann, Rend. Accad. Sci. Fis. Mat. Napoli (4) 39 (1972), 191-195. MR343204
  16. [16] D. Jerison - J.M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197. Zbl0661.32026MR880182
  17. [17] D. Jerison - J.M. Lee, CR normal coordinates and the Yamabe problem, J. Differential Geom. 29 (1989), 303-344. Zbl0671.32016MR982177
  18. [18] D. Jerison - A. Sánchez-Calle, Subelliptic, second order differential operators, In: "Complex Analysis III", Proceedings, University of Maryland 1985-86, Lecture Notes in Math., vol. 1277, Springer-Verlag, 1987, pp. 46-77. Zbl0634.35017MR922334
  19. [19] J.J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. Zbl0125.33302MR181815
  20. [20] J.J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis Minneapolis, 1964, Springer-Verlag, New York, 1965, pp. 81-94. Zbl0166.36003MR175149
  21. [21] J.M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. (1) 296 (1986), 411-429. Zbl0595.32026MR837820
  22. [22] J.M. Lee, Pseudo-Einstein structures on CR manifolds, American J. Math. 110 (1988), 157-178. Zbl0638.32019MR926742
  23. [23] A. Menikoff - J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann.235 (1978), 55-58. Zbl0375.35014MR481627
  24. [24] M. Okumura, Certain almost contact hypersurfaces in Euclidean spaces, Kodai Math. Sem. Reports, 16 (1964), 44-54; Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, Tôhoku Math. J.16 (1964), 270-284; Contact hypersurfaces in certain Kaehlerian manifolds, ibidem, 18 (1966), 74-102; S.I. Goldberg, Totally geodesic hypersurfaces of Kähler manifolds, Pacific J. Math., 27 (1968), 275-281. Zbl0126.38101MR162199
  25. [25] E.V. Radkevic, Hypoelliptic operators with multiple characteristics, Math. USSR Sb.8 (1969), 181-205. Zbl0207.09401MR261144
  26. [26] D.E. Blair - D. Perrone, A variational characterization of contact metric manifolds with vanishing torsion, Canad. Math. Bull. (4) 35 (1992), 455-462; Second variation of the "total scalar curvature " on contact manifolds, ibidem, (1) 38 (1995), 16-22; S.I. Goldberg - D. Perrone - G. Toth, Contact three-manifolds with positive generalized Tanaka-Webster scalar curvature, C.R. Math. Rep. Acad. Sci. Canada, (6) 10 (1988), 255-260; S.I. Goldberg - D. Perrone, Contact 3-manifolds with positive scalar curvature, Contemporary Math. 127 (1992), 59-68; D. Perrone, 5-Dimensional contact manifolds with second Betti number b2 = 0, Tôhoku Math. J. (1) 41 (1989), 163-170; A remark on homogeneous contact five-manifolds, Boll. Un. Mat. Ital. (B) (7) 3-A (1989), 231-235; Torsion and critical metrics on contact three-manifolds, Kodai Math. J. (1) 13 (1990), 88-100; Torsion tensor and critical metrics on contact (2n + 1)-manifolds, Monats. Math. 114 (1992), 245-259; Contact Riemannian manifolds satisfying R (X, ξ) · R = 0, Yokohama Math. J.39 (1992), 141-149; Tangent sphere bundles satisfying Δξτ = 0, Journal of Geometry49 (1994), 178-188; Ricci tensor and spectral rigidity of contact Riemannian 3-manifolds, Bull. Inst. Math. Acad. Sinica, (2) 24 (1996), 127-138; D. Perrone - L. Vanhecke, Five-dimensional homogeneous contact manifolds and related problems, Tôhoku Math. J. (2) 43 (1991), 243-248. 
  27. [27] N. Tanaka, "A Differential Geometric Study on Strongly Pseudo-Convex Manifolds ", Kinokuniya Book Store Co., Kyoto, 1975. Zbl0331.53025MR399517
  28. [28] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. (1) 314 (1989), 349-379. Zbl0677.53043MR1000553
  29. [29] H. Urakawa, Yang-Mills connections over compact strongly pseudoconvex CR manifolds, Math. Z.216 (1994), 541-573. Zbl0815.32008MR1288045
  30. [30] H. Urakawa, Variational problems over strongly pseudoconvex CR manifolds, In: "Differential Geometry", Proceedings of the Symposium in honour of professor Su Buchin on his 90th birthday, Shanghai China, September 17-23, 1991, C. H. Gu - H. S. Hu - Y. L. Xin (eds.), (Fundan University), World Scientific Publ. Co. Pte. Ltd., Singapore-New Jersey- London-Hong Kong, 1993, pp. 233-242. Zbl0785.53056MR1341616
  31. [31] I. Vaisman, New examples of twisted cohomologies, Boll. Un. Mat. Ital. (B) 7 (1993), 355-368. Zbl0781.53029MR1223646
  32. [32] S. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geom.13 (1978), 25-41. Zbl0379.53016MR520599
  33. [33] S. Webster, On the transformation group of a real hypersurface, Trans. Amer. Math. Soc. (1) 231 (1977), 179-190. Zbl0368.57013MR481085
  34. [34] S. Webster, The rigidity of CR hypersurfaces in a sphere, Indiana Univ. Math. J. (3) 28 (1979), 405-416. Zbl0387.53020MR529673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.