Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces
Riccarda Rossi; Giuseppe Savaré
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 2, page 395-431
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042-5044. Zbl0195.13002MR152860
- [2] E.J. Balder, A General Approach to Lower Semicontinuity and Lower Closure in Optimal Control Theory, SIAM J. Control Optim. 22 (1984 a), 570-568. Zbl0549.49005MR747970
- [3] H. Berliocchi – M. Lasry, Intégrandes Normales et Mesures Paramétrées en Calcul de Variations, Bull. Soc. Mat. France 101 (1973), 129-184. Zbl0282.49041MR344980
- [4] H. Brezis, “Analyse fonctionelle - Théorie et applications”, Masson, Paris, 1983. Zbl0511.46001MR697382
- [5] J.K. Brooks – N. Dinculeanu, Conditional expectations and weak and strong compactness in spaces of Bochner integrable functions, J. Multivariate Anal. 9 (1979), 420-427. Zbl0427.46026MR548792
- [6] P.L. Butzer – H. Berens, "Semi-Groups of Operators and Approximation", Springer, Berlin, 1967. Zbl0164.43702MR230022
- [7] C. Castaing, Quelques aperçus des résultats de compacité dans , Travaux Sém. Anal. Convexe 10 (1980), no. 2, exp. no. 16, 25. MR620315
- [8] C. Castaing – A. Kaminska, Kolmogorov and Riesz type criteria of compactness in Köthe spaces of vector valued functions, J. Math. Anal. Appl. 149 (1990), 96–113. Zbl0714.46025MR1054796
- [9] C. Castaing – M. Valadier, Weak convergence using Young measures, Funct. Approx. Comment. Math. 26 (1998), 7–17. Zbl0939.28002MR1666601
- [10] C. Dellacherie – P.A. Meyer, “Probabilities and Potential", North-Holland, Amsterdam, 1979. Zbl0494.60001MR521810
- [11] N. Dunford – J.T. Schwartz, “Linear Operators. Part I", Interscience Publishers, New York, 1958. Zbl0084.10402MR117523
- [12] R.E. Edwards, “Functional Analysis. Theory and Applications", Holt, Rinehart and Winston, New York, 1965. Zbl0182.16101MR221256
- [13] L.C. Evans – F. Gariepy, “Measure Theory and Fine Properties of Functions", Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1992. Zbl0804.28001MR1158660
- [14] J.L. Lions, “Equations différentielles opérationelles et problèmes aux limites", Springer, Berlin, 1961. Zbl0098.31101
- [15] J.L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires", Dunod, Gauthiers-Villars, Paris, 1969. Zbl0189.40603MR259693
- [16] J.L. Lions – E. Magenes, “Non Homogeneous Boundary Value problems and Applications”, volume I, Springer, New York-Heidelberg, 1972. Zbl0223.35039MR350177
- [17] S. Luckhaus, Solutions of the two phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math. 1 (1990), 101-111. Zbl0734.35159MR1117346
- [18] P.I. Plotnikov – V.N. Starovoitov, The Stefan problem with surface tension as a limit of phase field model, Differential Equations 29 (1993), 395-404. Zbl0802.35165MR1236334
- [19] J.M. Rakotoson – R. Temam, An Optimal Compactness Theorem and Application to Elliptic-Parabolic Systems, Appl. Math. Lett. 14 (2001), 303-306. Zbl1001.46049MR1820617
- [20] R. Rossi, Compactness results for evolution equations, Istit. Lombardo Accad. Sci. Lett. Rend. A. 135 (2002), 1-11. Zbl1167.35556MR1981626
- [21] M. Saadoune – M. Valadier, Convergence in measure. Local formulation of the Fréchet criterion, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 423–428. Zbl0847.28002MR1320115
- [22] M. Saadoune – M. Valadier, Convergence in measure the Fréchet criterion from local to global, Bull. Polish Acad. Sci. Math. 43 (1995), 47–57. Zbl0837.28005MR1414990
- [23] G. Savaré, Compactness Properties for Families of Quasistationary Solutions of some Evolution Equations, to appear in Trans. of A.M.S. Zbl1008.47065MR1911517
- [24] J. Simon, Compact Sets in the space , Ann. Mat. Pura Appl. 146 (1987), 65-96. Zbl0629.46031MR916688
- [25] R. Temam, Navier-Stokes equations and nonlinear functional analysis. Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Zbl0833.35110MR1318914
- [26] M. Valdier, Young Measures in Methods of Nonconvex Analysis, Ed. A. Cellina, Lecture Notes in Math. 1446 (Springer-Verlag, Berlin) (1990), 152-188. Zbl0738.28004MR1079763
- [27] A. Visintin, “Models of Phase Transitions", Birkhäuser, Boston, 1996. Zbl0882.35004MR1423808
Citations in EuDML Documents
top- Daniel Matthes, Horst Osberger, Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation
- Yohei Kashima, On the double critical-state model for type-II superconductivity in 3D
- Riccarda Rossi, Giuseppe Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications