A combinatorial approach to singularities of normal surfaces

Sandro Manfredini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 3, page 461-491
  • ISSN: 0391-173X

Abstract

top
In this paper we study generic coverings of 2 branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is { x n = y m } (with n m ) and the degree of the cover is equal to n or n - 1 .

How to cite

top

Manfredini, Sandro. "A combinatorial approach to singularities of normal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.3 (2003): 461-491. <http://eudml.org/doc/84509>.

@article{Manfredini2003,
abstract = {In this paper we study generic coverings of $\mathbb \{C\}^2$ branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is $\lbrace x^n=y^m\rbrace $ (with $n\le m$) and the degree of the cover is equal to $n$ or $n-1$.},
author = {Manfredini, Sandro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {461-491},
publisher = {Scuola normale superiore},
title = {A combinatorial approach to singularities of normal surfaces},
url = {http://eudml.org/doc/84509},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Manfredini, Sandro
TI - A combinatorial approach to singularities of normal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 3
SP - 461
EP - 491
AB - In this paper we study generic coverings of $\mathbb {C}^2$ branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is $\lbrace x^n=y^m\rbrace $ (with $n\le m$) and the degree of the cover is equal to $n$ or $n-1$.
LA - eng
UR - http://eudml.org/doc/84509
ER -

References

top
  1. [Ar] E. Artin, Theory of braids, Ann. of Math. 48 (1947), 101-126. Zbl0030.17703MR19087
  2. [Bi] J. Birman, “Braids, links and mapping class groups”, Princeton University Press, 1975. Zbl0305.57013MR375281
  3. [BK] E. Brieskorn – H. Knörrer, “Plane algebraic curves”, Birkhäuser, 1986. Zbl0588.14019MR886476
  4. [Fi] G. Fischer, “Complex analytic geometry”, Lect. Notes in Math., Springer-Verlag, 1976. Zbl0343.32002MR430286
  5. [GrRe] H. Grauert – R. Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245-318. Zbl0087.29003MR103285
  6. [GR] R. C. Gunning – H. Rossi, Analytic functions of several complex variables, Prentice-Hall series in modern analysis, (1965). Zbl0141.08601MR180696
  7. [La] H. Laufer, Normal two-dimensional singularities, Ann. of Math. Studies 71 Princeton Univ. Press, (1971). Zbl0245.32005MR320365
  8. [MKS] W. Magnus – A. Karrass – D. Solitar, “Combinatorial group theory”, Interscience, John Wiley and Sons, 1966. Zbl0138.25604MR207802
  9. [MP] S. Manfredini – R. Pignatelli, Generic covers branched over { x n = y m } , Topology Appl. 103 (2000), 1-31. Zbl0979.32015MR1746914
  10. [Mo] B. G. Moishezon, Stable branch curves and braid monodromy, Lect. Notes in Math. 862 (1981), 107-192. Zbl0476.14005MR644819
  11. [Mu] D. Mumford, The topology of normal singularities and a criterion for simplicity, Inst. Hautes Études Sci., Publ. Math. 9 (1961), 5-22. Zbl0108.16801MR153682
  12. [Na] R. Narasimhan, “Introduction to the theory of analytic spaces”, Lect. Notes in Math., Vol. 25, Springer-Verlag, 1966. Zbl0168.06003MR217337
  13. [O] M. Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978), 579-597. Zbl0387.14004MR513071
  14. [Pi] R. Pignatelli, Singolarità di superfici algebriche, Tesi di laurea, Università di Pisa (1994). 
  15. [T1] G. Teodosiu, A class of analytic coverings ramified over u 3 = v 2 , J. London Math. Soc. (2) 38 (1988), 231-242. Zbl0619.14009MR966295
  16. [T2] G. Teodosiu, Some analytic dihedral coverings, Stud. Cerc. Mat. 40 (1988), 155-159. Zbl0646.14013MR952368
  17. [VK] E. R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260. Zbl0006.41502MR1506962JFM59.0577.03
  18. [Z] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328. Zbl55.0806.01MR1506719JFM55.0806.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.