A combinatorial approach to singularities of normal surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 3, page 461-491
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topManfredini, Sandro. "A combinatorial approach to singularities of normal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.3 (2003): 461-491. <http://eudml.org/doc/84509>.
@article{Manfredini2003,
abstract = {In this paper we study generic coverings of $\mathbb \{C\}^2$ branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is $\lbrace x^n=y^m\rbrace $ (with $n\le m$) and the degree of the cover is equal to $n$ or $n-1$.},
author = {Manfredini, Sandro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {461-491},
publisher = {Scuola normale superiore},
title = {A combinatorial approach to singularities of normal surfaces},
url = {http://eudml.org/doc/84509},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Manfredini, Sandro
TI - A combinatorial approach to singularities of normal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 3
SP - 461
EP - 491
AB - In this paper we study generic coverings of $\mathbb {C}^2$ branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is $\lbrace x^n=y^m\rbrace $ (with $n\le m$) and the degree of the cover is equal to $n$ or $n-1$.
LA - eng
UR - http://eudml.org/doc/84509
ER -
References
top- [Ar] E. Artin, Theory of braids, Ann. of Math. 48 (1947), 101-126. Zbl0030.17703MR19087
- [Bi] J. Birman, “Braids, links and mapping class groups”, Princeton University Press, 1975. Zbl0305.57013MR375281
- [BK] E. Brieskorn – H. Knörrer, “Plane algebraic curves”, Birkhäuser, 1986. Zbl0588.14019MR886476
- [Fi] G. Fischer, “Complex analytic geometry”, Lect. Notes in Math., Springer-Verlag, 1976. Zbl0343.32002MR430286
- [GrRe] H. Grauert – R. Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245-318. Zbl0087.29003MR103285
- [GR] R. C. Gunning – H. Rossi, Analytic functions of several complex variables, Prentice-Hall series in modern analysis, (1965). Zbl0141.08601MR180696
- [La] H. Laufer, Normal two-dimensional singularities, Ann. of Math. Studies 71 Princeton Univ. Press, (1971). Zbl0245.32005MR320365
- [MKS] W. Magnus – A. Karrass – D. Solitar, “Combinatorial group theory”, Interscience, John Wiley and Sons, 1966. Zbl0138.25604MR207802
- [MP] S. Manfredini – R. Pignatelli, Generic covers branched over , Topology Appl. 103 (2000), 1-31. Zbl0979.32015MR1746914
- [Mo] B. G. Moishezon, Stable branch curves and braid monodromy, Lect. Notes in Math. 862 (1981), 107-192. Zbl0476.14005MR644819
- [Mu] D. Mumford, The topology of normal singularities and a criterion for simplicity, Inst. Hautes Études Sci., Publ. Math. 9 (1961), 5-22. Zbl0108.16801MR153682
- [Na] R. Narasimhan, “Introduction to the theory of analytic spaces”, Lect. Notes in Math., Vol. 25, Springer-Verlag, 1966. Zbl0168.06003MR217337
- [O] M. Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978), 579-597. Zbl0387.14004MR513071
- [Pi] R. Pignatelli, Singolarità di superfici algebriche, Tesi di laurea, Università di Pisa (1994).
- [T1] G. Teodosiu, A class of analytic coverings ramified over , J. London Math. Soc. (2) 38 (1988), 231-242. Zbl0619.14009MR966295
- [T2] G. Teodosiu, Some analytic dihedral coverings, Stud. Cerc. Mat. 40 (1988), 155-159. Zbl0646.14013MR952368
- [VK] E. R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260. Zbl0006.41502MR1506962JFM59.0577.03
- [Z] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328. Zbl55.0806.01MR1506719JFM55.0806.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.