Riemann maps in almost complex manifolds

Bernard Coupet; Hervé Gaussier; Alexandre Sukhov

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 4, page 761-785
  • ISSN: 0391-173X

Abstract

top
We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.

How to cite

top

Coupet, Bernard, Gaussier, Hervé, and Sukhov, Alexandre. "Riemann maps in almost complex manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 761-785. <http://eudml.org/doc/84518>.

@article{Coupet2003,
abstract = {We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.},
author = {Coupet, Bernard, Gaussier, Hervé, Sukhov, Alexandre},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {761-785},
publisher = {Scuola normale superiore},
title = {Riemann maps in almost complex manifolds},
url = {http://eudml.org/doc/84518},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Coupet, Bernard
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Riemann maps in almost complex manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 761
EP - 785
AB - We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.
LA - eng
UR - http://eudml.org/doc/84518
ER -

References

top
  1. [1] Z. Balogh – Ch. Leuenberger, Higher dimensional Riemann maps, Internat. J. Math. 9 (1998), 421-442. Zbl0916.32019MR1635177
  2. [2] D. Bennequin, Topologie symplectique, convexité holomorphe holomorphe et structures de contact [d’après Y. Eliashberg, D. Mc Duff et al.], Astérisque 189-190 (1990), 285-323. Zbl0755.32009MR1099880
  3. [3] J. Bland, Contact geometry and CR structures on 𝕊 3 , Acta Math. 172 (1994), 1-49. Zbl0814.32002MR1263996
  4. [4] J. Bland – T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112. Zbl0731.32010MR1094047
  5. [5] J. Bland – T. Duchamp – M. Kalka, A characterization of n by its automorphism group, Lecture Notes in Math. 1268 (1987), 60-65. Zbl0621.32030MR907053
  6. [6] M. Cerne, Stationary discs of fibrations over the circle, Internat. J. Math. 6 (1995), 805-823. Zbl0841.32007MR1353996
  7. [7] E. Chirka, Regularity of boundaries of analytic sets, Math. USSR-Sb. 45 (1983), 291-336. Zbl0525.32005MR648411
  8. [8] K. Clancey – I. Gohberg, “Factorization of matrix functions and singular integral operators”, Birkhauser, Basel, Boston, Stuttgart, 1981. Zbl0474.47023MR657762
  9. [9] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. math. 26 (1974), 1-65. Zbl0289.32012MR350069
  10. [10] J. Globevnik, Perturbation by analytic discs along maximal real submanifolds of N , Math. Z. 217 (1994), 287-316. Zbl0806.58044MR1296398
  11. [11] J. Globevnik, Perturbing analytic discs attached to a maximal totally real submanifolds of n , Indag. Math. 7 (1996), 37-46. Zbl0861.32013MR1621348
  12. [12] S. Ishihara – K. Yano, “Tangent and cotangent bundles: differential geometry”, Pure and Applied Mathematics, No. 16, Marcel Dekker Inc., New York, 1973. Zbl0262.53024MR350650
  13. [13] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. Zbl0492.32025MR660145
  14. [14] L. Lempert, Solving the degenerate complex Monge-Ampère equation with one concentrated singularity, Math. Ann. 263 (1983), 515-532. Zbl0531.35020MR707246
  15. [15] L. Lempert, A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 193 (1986), 559-579. Zbl0603.32013MR867348
  16. [16] L. Lempert, Holomorphic invariants, normal forms and moduli space of convex domains, Ann. of Math. 128 (1988), 47-78. Zbl0658.32015MR951507
  17. [17] L. Lempert, Erratum: A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 206 (1991), 501-504. Zbl0716.32018MR1095768
  18. [18] P. Libermann, Problèmes d’équivalence relatifs à une structure presque complexe sur une variété à quatre dimensions, Acad. Roy. Belgique Bull. Cl. Sci. (5) 36 (1950), 742-755. Zbl0057.38204MR40791
  19. [19] M. Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. Zbl0795.32008MR1250257
  20. [20] S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in n , Mem. Amer. Math. Soc. 98 (1992), vi+98pp. Zbl0777.32015MR1113614
  21. [21] J. C. Sikorav, “Some properties of holomorphic curves in almost complex manifolds”, pp.165-189, In: “Holomorphic curves in symplectic geometry", Michèle Audin, Jacques Lafontaine Editors, Birkhäuser, 1994. MR1274929
  22. [22] A. Spiro – S. Trapani, Eversive maps of bounded convex domains in n + 1 , J. Geom. Anal. 12 (2002), 695-715. Zbl1039.32019MR1916865
  23. [23] A. Tumanov, Extremal discs and the regularity of CR mappings in higher codimension, Amer. J. Math. 123 (2001), 445-473. Zbl0995.32024MR1833148
  24. [24] N. P. Vekua, “Systems of singular integral equations”, Nordholf, Groningen, 1967. Zbl0166.09802MR211220
  25. [25] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28. Zbl0626.32019MR477138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.