The evolution of the scalar curvature of a surface to a prescribed function

Paul Baird[1]; Ali Fardoun[1]; Rachid Regbaoui[1]

  • [1] Département de Mathématiques Université de Brest 6, Avenue Le Gorgeu 29285 Brest, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 1, page 17-38
  • ISSN: 0391-173X

Abstract

top
We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.

How to cite

top

Baird, Paul, Fardoun, Ali, and Regbaoui, Rachid. "The evolution of the scalar curvature of a surface to a prescribed function." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 17-38. <http://eudml.org/doc/84525>.

@article{Baird2004,
abstract = {We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.},
affiliation = {Département de Mathématiques Université de Brest 6, Avenue Le Gorgeu 29285 Brest, France; Département de Mathématiques Université de Brest 6, Avenue Le Gorgeu 29285 Brest, France; Département de Mathématiques Université de Brest 6, Avenue Le Gorgeu 29285 Brest, France},
author = {Baird, Paul, Fardoun, Ali, Regbaoui, Rachid},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {17-38},
publisher = {Scuola Normale Superiore, Pisa},
title = {The evolution of the scalar curvature of a surface to a prescribed function},
url = {http://eudml.org/doc/84525},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Baird, Paul
AU - Fardoun, Ali
AU - Regbaoui, Rachid
TI - The evolution of the scalar curvature of a surface to a prescribed function
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 17
EP - 38
AB - We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.
LA - eng
UR - http://eudml.org/doc/84525
ER -

References

top
  1. [1] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J.Math.Pures Appl. 55 (1976), 269-296. Zbl0336.53033MR431287
  2. [2] T. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire prescrite, J. Funct. Anal. 32 (1979), 148-174. Zbl0411.46019MR534672
  3. [3] T. Aubin, Sur le problème de la courbure scalaire prescrite, Bull. Sci. Math. (5) 118 (1994), 465-474. Zbl0828.53035MR1305205
  4. [4] J. Bartz – M. Struwe – R. Ye, A new approach to the Ricci flow on S 2 , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 475-482. Zbl0818.53050MR1310637
  5. [5] S. Bismuth, Prescribed scalar curvature on a C compact Riemannian manifold of dimension two, Bull. Sci. Math. 124 (2000), 239-248. Zbl0984.53017MR1753266
  6. [6] S. Y. A. Chang – P. C. Yang, Prescribing Gaussian curvature on S 2 , Acta Math. 159 (1987), 215-259. Zbl0636.53053MR908146
  7. [7] S. Y. A. Chang – P. C. Yang, Conformal deformations of metric on S 2 , J. Differential Geom. 27 (1988), 259-296. Zbl0649.53022MR925123
  8. [8] S. Y. A. Chang – M. J. Gursky – P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differerential Equations 1 (1993), 205-229. Zbl0822.35043MR1261723
  9. [9] W. Chen – C. Li, A note on Kazdan-Warner type conditions, J. Differential Geom. 41 (1995), 259-268. Zbl0822.53026MR1331968
  10. [10] W. Chen – C. Li, A necessary and sufficient condition for the Nirenberg Problem, Comm. Pure Appl. Math. 47 (1995), 657-667. Zbl0830.35034MR1338474
  11. [11] W. Chen – W. X. Ding, Scalar curvature on S 2 , Trans. Amer. Math. Soc. 303 (1987), 365-382. Zbl0635.35026MR896027
  12. [12] X. X. Chen, Calabi flows in Riemannian surfaces revisited; a new point of view, Int. Math. Res. Not. 6 (2001), 275-297. Zbl1078.53065MR1820328
  13. [13] B. Chow, The Ricci-Hamilton flow on the 2-sphere, J. Differential Geom. 24 (1986), 153-179. 
  14. [14] R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-262. Zbl0663.53031MR954419
  15. [15] M. A. Jendoubi, A simple unified approach to some convergence Theorems of L.Simon, J. Funct. Anal. 153 (1998), 187-202. Zbl0895.35012MR1609269
  16. [16] J. Kazdan – F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. Zbl0273.53034MR343205
  17. [17] J. Kazdan – F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. 101 (1975), 317-331. Zbl0297.53020MR375153
  18. [18] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. Zbl0213.13001MR301504
  19. [19] J. Moser, On a nonlinear problem in differential geometry, In: “Dynamical systems” (M. Peixoto eds.), Academic Press, 1973. Zbl0275.53027MR339258
  20. [20] E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Physics 86 (1982), 321-326. Zbl0506.47031MR677001
  21. [21] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math. 118 (1983), 525-571. Zbl0549.35071MR727703
  22. [22] M. Struwe, Curvature flows on surfaces, Ann. Scuola Norm. Sup. Pisa (5) 1 (2002), 247-274. Zbl1150.53025MR1991140
  23. [23] X. Xu – P. Yang, Remarks on prescribing Gauss Curvature, Trans. Amer. Math. Soc. 336 (1993), 831-840. Zbl0823.53034MR1087058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.