Curvature flows on surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 2, page 247-274
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topStruwe, Michael. "Curvature flows on surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 247-274. <http://eudml.org/doc/84470>.
@article{Struwe2002,
abstract = {Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.},
author = {Struwe, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {247-274},
publisher = {Scuola normale superiore},
title = {Curvature flows on surfaces},
url = {http://eudml.org/doc/84470},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Struwe, Michael
TI - Curvature flows on surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 247
EP - 274
AB - Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.
LA - eng
UR - http://eudml.org/doc/84470
ER -
References
top- [1] Th. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Monographs in Mathematics, Springer, 1998. Zbl0896.53003MR1636569
- [2] Th. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174. Zbl0411.46019MR534672
- [3] S. Bando – T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, In: “Proc. Algebraic geometry”, Sendai (1985), Adv. Stud. Pure Math. 10 (1987), 11-40. Zbl0641.53065MR946233
- [4] J. Bartz – M. Struwe – R. Ye, A new approach to the Ricci flow on , Ann. Cl. Sci. (4) Scuola Norm. Sup. Pisa, 21 (1994), 475-482. Zbl0818.53050MR1310637
- [5] M. Berger, “Geometry II”, Universitext, Springer, 1987. Zbl0606.51001MR882916
- [6] H. Brezis – F. Merle, Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Paretial Differential Equations 16 (1991), 1223-1253. Zbl0746.35006MR1132783
- [7] E. Calabi, Extremal Kähler metrics, In: “Seminar on differential geometry”, S. T. Yau (ed.), Princeton University Press, 1982. Zbl0487.53057MR645743
- [8] S.-Y. A. Chang, The Moser-Onofri inequality and applications to some problems in conformal geometry, In: “Nonlinear partial differential equations in differential geometry”, R. Hardt – M. Wolf (eds.), IAS/Park City Math. Ser. 2 (1996), 65-125. Zbl0924.58106MR1369587
- [9] X. X. Chen, Calabi flow in Riemann surface revisited: A new point of view, Intern. Math. Res. Notices No. 6 (2001), 275-297. Zbl1078.53065MR1820328
- [10] X. X. Chen, Weak limits of Riemannian metrics in surfaces with integral curvature bounds, Calc. Var. Partial Differential Equations 6 (1998), 189-226. Zbl0894.53040MR1614627
- [11] B. Chow, The Ricci-Hamilton flow on the 2-sphere, J. Diff. Geom. 24 (1986), 153-179.
- [12] P. Chrusciel, Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation, Comm. Math. Phys. 137 (1991), 289-313. Zbl0729.53071MR1101689
- [13] D. De Turck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18 (1983), 157-162. Zbl0517.53044MR697987
- [14] R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-262. Zbl0663.53031MR954419
- [15] J. Kazdan – F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. Zbl0273.53034MR343205
- [16] J. Moser, On a nonlinear problem in differential geometry, In: “Dynamical systems”, M. Peixoto (ed.), Academic Press, 1973. Zbl0275.53027MR339258
- [17] A. Polden, Curves and surfaces of least total curvature and fourth order flows, Ph. D. thesis, Tübingen, 1996.
- [18] I. Robinson – A. Trautman, Spherical gravitational waves, Phys. Rev. Lett. 4 (1960), 431-432 Zbl0093.43304
- [19] H. Schwetlick, Higher order curvature flows on Riemannian surfaces, preprint, 2000.
- [20] D. Singleton, Ph. D. thesis, Monash University, 1990; confer also: On global existence and convergence of vacuum Robinson-Trautman solutions, Class. Quantum Grav. 7 (1990), 1333-1343. Zbl0702.53061MR1064183
- [21] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. Zbl0163.36402MR216286
- [22] R. Ye, Global existence and convergence of the Yamabe flow, J. Differential Geom. 39 (1994), 35-50. Zbl0846.53027MR1258912
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.