Curvature flows on surfaces

Michael Struwe

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 2, page 247-274
  • ISSN: 0391-173X

Abstract

top
Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.

How to cite

top

Struwe, Michael. "Curvature flows on surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 247-274. <http://eudml.org/doc/84470>.

@article{Struwe2002,
abstract = {Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.},
author = {Struwe, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {247-274},
publisher = {Scuola normale superiore},
title = {Curvature flows on surfaces},
url = {http://eudml.org/doc/84470},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Struwe, Michael
TI - Curvature flows on surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 247
EP - 274
AB - Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.
LA - eng
UR - http://eudml.org/doc/84470
ER -

References

top
  1. [1] Th. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Monographs in Mathematics, Springer, 1998. Zbl0896.53003MR1636569
  2. [2] Th. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174. Zbl0411.46019MR534672
  3. [3] S. Bando – T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, In: “Proc. Algebraic geometry”, Sendai (1985), Adv. Stud. Pure Math. 10 (1987), 11-40. Zbl0641.53065MR946233
  4. [4] J. Bartz – M. Struwe – R. Ye, A new approach to the Ricci flow on S 2 , Ann. Cl. Sci. (4) Scuola Norm. Sup. Pisa, 21 (1994), 475-482. Zbl0818.53050MR1310637
  5. [5] M. Berger, “Geometry II”, Universitext, Springer, 1987. Zbl0606.51001MR882916
  6. [6] H. Brezis – F. Merle, Uniform estimates and blow-up behavior for solutions of - Δ u = V ( x ) e u in two dimensions, Comm. Paretial Differential Equations 16 (1991), 1223-1253. Zbl0746.35006MR1132783
  7. [7] E. Calabi, Extremal Kähler metrics, In: “Seminar on differential geometry”, S. T. Yau (ed.), Princeton University Press, 1982. Zbl0487.53057MR645743
  8. [8] S.-Y. A. Chang, The Moser-Onofri inequality and applications to some problems in conformal geometry, In: “Nonlinear partial differential equations in differential geometry”, R. Hardt – M. Wolf (eds.), IAS/Park City Math. Ser. 2 (1996), 65-125. Zbl0924.58106MR1369587
  9. [9] X. X. Chen, Calabi flow in Riemann surface revisited: A new point of view, Intern. Math. Res. Notices No. 6 (2001), 275-297. Zbl1078.53065MR1820328
  10. [10] X. X. Chen, Weak limits of Riemannian metrics in surfaces with integral curvature bounds, Calc. Var. Partial Differential Equations 6 (1998), 189-226. Zbl0894.53040MR1614627
  11. [11] B. Chow, The Ricci-Hamilton flow on the 2-sphere, J. Diff. Geom. 24 (1986), 153-179. 
  12. [12] P. Chrusciel, Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation, Comm. Math. Phys. 137 (1991), 289-313. Zbl0729.53071MR1101689
  13. [13] D. De Turck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18 (1983), 157-162. Zbl0517.53044MR697987
  14. [14] R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237-262. Zbl0663.53031MR954419
  15. [15] J. Kazdan – F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. Zbl0273.53034MR343205
  16. [16] J. Moser, On a nonlinear problem in differential geometry, In: “Dynamical systems”, M. Peixoto (ed.), Academic Press, 1973. Zbl0275.53027MR339258
  17. [17] A. Polden, Curves and surfaces of least total curvature and fourth order flows, Ph. D. thesis, Tübingen, 1996. 
  18. [18] I. Robinson – A. Trautman, Spherical gravitational waves, Phys. Rev. Lett. 4 (1960), 431-432 Zbl0093.43304
  19. [19] H. Schwetlick, Higher order curvature flows on Riemannian surfaces, preprint, 2000. 
  20. [20] D. Singleton, Ph. D. thesis, Monash University, 1990; confer also: On global existence and convergence of vacuum Robinson-Trautman solutions, Class. Quantum Grav. 7 (1990), 1333-1343. Zbl0702.53061MR1064183
  21. [21] N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. Zbl0163.36402MR216286
  22. [22] R. Ye, Global existence and convergence of the Yamabe flow, J. Differential Geom. 39 (1994), 35-50. Zbl0846.53027MR1258912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.