Complex geodesics of the minimal ball in n

Peter Pflug[1]; El Hassan Youssfi[2]

  • [1] Institut für Mathematik Postfach 2503 Universität Oldenburg 26111 Oldenburg, Germany
  • [2] LATP, U.M.R. C.N.R.S. 6632 CMI, Université de Provence 39 Rue F-Joliot-Curie 13453 Marseille Cedex 13, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 1, page 53-66
  • ISSN: 0391-173X

Abstract

top
In this note we give a characterization of the complex geodesics of the minimal ball in n . This answers a question posed by Jarnicki and Pflug (cf. [JP], Example 8.3.10)

How to cite

top

Pflug, Peter, and Youssfi, El Hassan. "Complex geodesics of the minimal ball in $\mathbb {C}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 53-66. <http://eudml.org/doc/84528>.

@article{Pflug2004,
abstract = {In this note we give a characterization of the complex geodesics of the minimal ball in $\mathbb \{C\}^\{n\}$. This answers a question posed by Jarnicki and Pflug (cf. [JP], Example 8.3.10)},
affiliation = {Institut für Mathematik Postfach 2503 Universität Oldenburg 26111 Oldenburg, Germany; LATP, U.M.R. C.N.R.S. 6632 CMI, Université de Provence 39 Rue F-Joliot-Curie 13453 Marseille Cedex 13, France},
author = {Pflug, Peter, Youssfi, El Hassan},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {53-66},
publisher = {Scuola Normale Superiore, Pisa},
title = {Complex geodesics of the minimal ball in $\mathbb \{C\}^n$},
url = {http://eudml.org/doc/84528},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Pflug, Peter
AU - Youssfi, El Hassan
TI - Complex geodesics of the minimal ball in $\mathbb {C}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 53
EP - 66
AB - In this note we give a characterization of the complex geodesics of the minimal ball in $\mathbb {C}^{n}$. This answers a question posed by Jarnicki and Pflug (cf. [JP], Example 8.3.10)
LA - eng
UR - http://eudml.org/doc/84528
ER -

References

top
  1. [E] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. Zbl0851.32025MR1348220
  2. [G] G. Gentili, Regular complex geodesics in the domain D n = { ( z 1 , ... , z n ) n : | z 1 | + + | z n | l t ; 1 } , In: “Complex Analysis III”, C. A. Berenstein (ed.), Lecture Notes in Math. Vol. 1275, Springer-Verlag, Berlin, 1987, pp. 235-252. Zbl0643.32008MR922333
  3. [HP] K. T. Hahn – P. Pflug, On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), 107-112. Zbl0638.32005MR930429
  4. [JP] M. Jarnicki – P. Pflug, “Invariant Distances and Metrics in Complex Analysis”, de Gruyter Expositions in Mathematics, Walter de Gruyter, 1993. Zbl0789.32001MR1242120
  5. [K] K. T. Kim, Automorphism group of certain domains with singular boundary, Pacific J. Math. 51 (1991), 54-64. Zbl0698.32016MR1127586
  6. [MY] G. Mengotti – E. H. Youssfi, The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. Math. 123 (1999), 501-525. Zbl0956.32006MR1713302
  7. [OPY] K. Oeljeklaus – P. Pflug – E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. Zbl0873.32025MR1465791
  8. [OY] K. Oeljeklaus – E. H. Youssfi, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal. 7 (1997), 623-636. Zbl0942.32019MR1669215
  9. [PY] P. Pflug – E. H. Youssfi, The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240-245. Zbl0911.32037MR1637386
  10. [Z] W. Zwonek, Automorphism group of some special domain in n , Univ. Iagel. Acta Math. 33 (1996), 185-189. Zbl0948.32024MR1422451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.