The Bergman kernel of the minimal ball and applications
Karl Oeljeklaus; Peter Pflug; El Hassan Youssfi
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 3, page 915-928
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Bel] S. BELL, Proper holomorphic mappings between circular domains, Comment. Math. Helv., 57 (1982), 532-538. Zbl0511.32013MR84m:32032
- [Ber] F. BERTELOOT, Attraction des disques analytiques et hölderienne d'applications holomorphes propres, Banach Center Publications, 31 (1995), 91-98. Zbl0831.32012MR96k:32054
- [DF] K. DIEDERICH and J.E. FORNAESS, Pseudoconvex Domains : Bounded Strictly Plurisubharmonic Exhaustion Functions, Inventiones Math., 39 (1977), 129-141. Zbl0353.32025
- [FH] W. FULTON & J. HARRIS, Representation theory, Graduate Texts in Math., Springer-Verlag, 1991. Zbl0744.22001MR93a:20069
- [HP] K.T. HAHN & P. PFLUG, On a minimal complex norm that extends the euclidean norm, Monatsh. Math., 105 (1988), 107-112. Zbl0638.32005MR89a:32031
- [JP] M. JARNICKI & P. PFLUG, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. Zbl0789.32001MR94k:32039
- [Ki] K.T. KIM, Automorphism groups of certain domains in Cn with singular boundary, Pacific J. Math., 151 (1991), 54-64. Zbl0698.32016MR92j:32117
- [Le] J.J. LOEB, Les noyaux de Bergman et Szegö pour des domaines strictement pseudo-convexes généralisent la boule, Publicationes Math., 36 (1992), 65-72. Zbl0765.32014MR93g:32034
- [OY] K. OELJEKLAUS & E.H. YOUSSFI, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal., to appear. Zbl0942.32019
- [Pi1] S. PINCHUK, Scaling method and holomorphic mappings, Proc. Symposia in Pure Math., Part 1, 52 (1991). Zbl0744.32013MR92i:32031
- [Pi2] S. PINCHUK, On proper holomorphic mappings on strictly pseudoconvex domains, Sib. Math. J., 15 (1974). Zbl0303.32016
- [Th] A. THOMAS, Uniform extendability of the Bergman kernel, Illinois J. Math., 39 (1995), 598-605. Zbl0849.32016MR96i:32025