The Bergman kernel of the minimal ball and applications
Karl Oeljeklaus; Peter Pflug; El Hassan Youssfi
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 3, page 915-928
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOeljeklaus, Karl, Pflug, Peter, and Youssfi, El Hassan. "The Bergman kernel of the minimal ball and applications." Annales de l'institut Fourier 47.3 (1997): 915-928. <http://eudml.org/doc/75249>.
@article{Oeljeklaus1997,
abstract = {In this note we compute the Bergman kernel of the unit ball with respect to the smallest norm in $\{\Bbb C\}^\{n\}$ that extends the euclidean norm in $\{\Bbb R\}^\{n\}$ and give some applications.},
author = {Oeljeklaus, Karl, Pflug, Peter, Youssfi, El Hassan},
journal = {Annales de l'institut Fourier},
keywords = {Bergman kernel; minimal ball; proper holomorphic mapping},
language = {eng},
number = {3},
pages = {915-928},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Bergman kernel of the minimal ball and applications},
url = {http://eudml.org/doc/75249},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Oeljeklaus, Karl
AU - Pflug, Peter
AU - Youssfi, El Hassan
TI - The Bergman kernel of the minimal ball and applications
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 915
EP - 928
AB - In this note we compute the Bergman kernel of the unit ball with respect to the smallest norm in ${\Bbb C}^{n}$ that extends the euclidean norm in ${\Bbb R}^{n}$ and give some applications.
LA - eng
KW - Bergman kernel; minimal ball; proper holomorphic mapping
UR - http://eudml.org/doc/75249
ER -
References
top- [Bel] S. BELL, Proper holomorphic mappings between circular domains, Comment. Math. Helv., 57 (1982), 532-538. Zbl0511.32013MR84m:32032
- [Ber] F. BERTELOOT, Attraction des disques analytiques et hölderienne d'applications holomorphes propres, Banach Center Publications, 31 (1995), 91-98. Zbl0831.32012MR96k:32054
- [DF] K. DIEDERICH and J.E. FORNAESS, Pseudoconvex Domains : Bounded Strictly Plurisubharmonic Exhaustion Functions, Inventiones Math., 39 (1977), 129-141. Zbl0353.32025
- [FH] W. FULTON & J. HARRIS, Representation theory, Graduate Texts in Math., Springer-Verlag, 1991. Zbl0744.22001MR93a:20069
- [HP] K.T. HAHN & P. PFLUG, On a minimal complex norm that extends the euclidean norm, Monatsh. Math., 105 (1988), 107-112. Zbl0638.32005MR89a:32031
- [JP] M. JARNICKI & P. PFLUG, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. Zbl0789.32001MR94k:32039
- [Ki] K.T. KIM, Automorphism groups of certain domains in Cn with singular boundary, Pacific J. Math., 151 (1991), 54-64. Zbl0698.32016MR92j:32117
- [Le] J.J. LOEB, Les noyaux de Bergman et Szegö pour des domaines strictement pseudo-convexes généralisent la boule, Publicationes Math., 36 (1992), 65-72. Zbl0765.32014MR93g:32034
- [OY] K. OELJEKLAUS & E.H. YOUSSFI, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal., to appear. Zbl0942.32019
- [Pi1] S. PINCHUK, Scaling method and holomorphic mappings, Proc. Symposia in Pure Math., Part 1, 52 (1991). Zbl0744.32013MR92i:32031
- [Pi2] S. PINCHUK, On proper holomorphic mappings on strictly pseudoconvex domains, Sib. Math. J., 15 (1974). Zbl0303.32016
- [Th] A. THOMAS, Uniform extendability of the Bergman kernel, Illinois J. Math., 39 (1995), 598-605. Zbl0849.32016MR96i:32025
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.