# On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez^{[1]}; Annamaria Montanari^{[2]}

- [1] Department of Mathematics Temple University Philadelphia, PA 19122
- [2] Dipartimento di Matematica Università di Bologna Piazza Porta San Donato, 5 40127 Bologna, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

- Volume: 3, Issue: 2, page 349-366
- ISSN: 0391-173X

## Access Full Article

top## Abstract

top## How to cite

topGutiérrez, Cristian E., and Montanari, Annamaria. "On the second order derivatives of convex functions on the Heisenberg group." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (2004): 349-366. <http://eudml.org/doc/84533>.

@article{Gutiérrez2004,

abstract = {In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous $\mathcal \{H\}$–convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous $\mathcal \{H\}$–convex functions in the Heisenberg group.},

affiliation = {Department of Mathematics Temple University Philadelphia, PA 19122; Dipartimento di Matematica Università di Bologna Piazza Porta San Donato, 5 40127 Bologna, Italy},

author = {Gutiérrez, Cristian E., Montanari, Annamaria},

journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},

language = {eng},

number = {2},

pages = {349-366},

publisher = {Scuola Normale Superiore, Pisa},

title = {On the second order derivatives of convex functions on the Heisenberg group},

url = {http://eudml.org/doc/84533},

volume = {3},

year = {2004},

}

TY - JOUR

AU - Gutiérrez, Cristian E.

AU - Montanari, Annamaria

TI - On the second order derivatives of convex functions on the Heisenberg group

JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

PY - 2004

PB - Scuola Normale Superiore, Pisa

VL - 3

IS - 2

SP - 349

EP - 366

AB - In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous $\mathcal {H}$–convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for the class of continuous $\mathcal {H}$–convex functions in the Heisenberg group.

LA - eng

UR - http://eudml.org/doc/84533

ER -

## References

top- [1] L. Ambrosio – V. Magnani, Weak diferentiability of BV functions on stratified groups, http://cvgmt.sns.it/papers/ambmag02/ Zbl1048.49030
- [2] Z. M. Balogh – M. Rickly, Regularity of convex functions on Heisenberg groups, http://cvgmt.sns.it/papers/balric/convex.pdf Zbl1121.43007MR2040646
- [3] D. Danielli – N. Garofalo – D. M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263-341. Zbl1077.22007MR2014879
- [4] L. C. Evans – R. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [5] C. E. Gutiérrez – A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, to appear. Zbl1056.35033MR2103838
- [6] P. Juutinen – G. Lu – J. Manfredi – B. Stroffolini, Convex functions on Carnot groups, Preprint. Zbl1124.49024MR2351130
- [7] Guozhen Lu – J. Manfredi – B. Stroffolini, Convex functions on the Heisenberg group, Calc. Var., Partial Differential Equations, to appear. Zbl1072.49019MR2027845
- [8] V. Magnani, Lipschitz continuity, Aleksandrov’s Theorem and characterization of $H$-convex functions, http://cvgmt.sns.it/onthefly.cgi/papers/mag03a/hconvex.pdf Zbl1115.49004
- [9] E. M. Stein, “Harmonic Analysis: Real Variable methods, Orthogonality and Oscillatory Integrals”, Vol. 43 of the Princeton Math. Series. Princeton U. Press. Princeton, NJ, 1993. Zbl0821.42001MR1232192
- [10] N. S. Trudinger – Xu-Jia Wang, Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), 225-239. Zbl0915.35039MR1634570
- [11] C. Y. Wang, Viscosity convex functions on Carnot groups, http://arxiv.org/abs/math.AP/0309079, Zbl1057.22012

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.