Some relations among volume, intrinsic perimeter and one-dimensional restrictions of functions in Carnot groups
Francescopaolo Montefalcone[1]
- [1] Dipartimento di Matematica Università degli Studi di Bologna Piazza di P. ta S. Donato, 5 40126 Bologna, Italia
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 1, page 79-128
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMontefalcone, Francescopaolo. "Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 79-128. <http://eudml.org/doc/84557>.
@article{Montefalcone2005,
abstract = {Let $\mathbb \{G\}$ be a $k$-step Carnot group. The first aim of this paper is to show an interplay between volume and $\mathbb \{G\}$-perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for $\mathbb \{G\}$-regular submanifolds of codimension one. We then give some applications of this result: slicing of $BV_\{\mathbb \{G\}\}$ functions, integral geometric formulae for volume and $\mathbb \{G\}$-perimeter and, making use of a suitable notion of convexity, called$\mathbb \{G\}$-convexity, we state a Cauchy type formula for $\mathbb \{G\}$-convex sets. Finally, in the last section we prove a sub-riemannian Santaló formula showing some related applications. In particular we find two lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-laplacian $\Delta _\{\mathbb \{G\}\}$ on smooth domains.},
affiliation = {Dipartimento di Matematica Università degli Studi di Bologna Piazza di P. ta S. Donato, 5 40126 Bologna, Italia},
author = {Montefalcone, Francescopaolo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {measures on Carnot groups; -convexity; Fubini-like theorems},
language = {eng},
number = {1},
pages = {79-128},
publisher = {Scuola Normale Superiore, Pisa},
title = {Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups},
url = {http://eudml.org/doc/84557},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Montefalcone, Francescopaolo
TI - Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 1
SP - 79
EP - 128
AB - Let $\mathbb {G}$ be a $k$-step Carnot group. The first aim of this paper is to show an interplay between volume and $\mathbb {G}$-perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for $\mathbb {G}$-regular submanifolds of codimension one. We then give some applications of this result: slicing of $BV_{\mathbb {G}}$ functions, integral geometric formulae for volume and $\mathbb {G}$-perimeter and, making use of a suitable notion of convexity, called$\mathbb {G}$-convexity, we state a Cauchy type formula for $\mathbb {G}$-convex sets. Finally, in the last section we prove a sub-riemannian Santaló formula showing some related applications. In particular we find two lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-laplacian $\Delta _{\mathbb {G}}$ on smooth domains.
LA - eng
KW - measures on Carnot groups; -convexity; Fubini-like theorems
UR - http://eudml.org/doc/84557
ER -
References
top- [1] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), 51–67. Zbl1002.28004MR1823840
- [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. Zbl0957.49001MR1857292
- [3] L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527–555. Zbl0966.28002MR1800768
- [4] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. Zbl0984.49025MR1794185
- [5] L. Ambrosio and V. Magnani, Some fine properties of BV functions on sub-Riemannian groups, Math. Z. 245 (2003). Zbl1048.49030MR2023957
- [6] L. Ambrosio and P. Tilli, “Selected topics on Analysis in Metric Spaces”, Quaderni della Scuola Normale Superiore, Pisa, 2000. Zbl1084.28500MR2012736
- [7] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients, J. Reine Angew. Math. 564 (2003), 63–83. Zbl1051.53024MR2021034
- [8] Z. M. Balogh and M. Rickly, Regularity of convex functions on Heisenberg groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 847–868. Zbl1121.43007MR2040646
- [9] Z. M. Balogh, J. J. Manfredi and J. Tyson, Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups, J. Funct. Anal. 204 (2003), 35–49. Zbl1080.22003MR2004744
- [10] A. Bellaïche, The tangent space in subriemannian geometry, In: “Subriemannian Geometry”, A. Bellaiche and J. Risler (eds.), Progress in Mathematics 144, Birkhauser Verlag, Basel, 1996. Zbl0862.53031MR1421822
- [11] A. L. Besse, “Manifolds all of whose Geodesics are Closed”, Springer Verlag, Berlin, 1978. Zbl0387.53010MR496885
- [12] I. Birindelli and J. Prajapat, Monotonicity and simmetry results for degenerate elliptic equations on nilpotent Lie groups, Pacific J. Math. 204 (2002), 1–17. Zbl1158.35305MR1905188
- [13] Yu. D. Burago and V. A. Zalgaller, “Geometric Inequalities”, Springer Verlag, Berlin, 1980. Zbl0633.53002MR936419
- [14] L. Capogna, D. Danielli and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203–215. Zbl0864.46018MR1312686
- [15] I. Chavel, “Riemannian Geometry: a modern introduction”, Cambridge University Press, 1994. Zbl0819.53001MR2229062
- [16] I. Chavel, “Isoperimetric Inequalities”, Cambridge University Press, 2001. Zbl0988.51019MR1849187
- [17] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl0942.58018MR1708448
- [18] G. Citti, M. Manfredini and A. Sarti, Minimum of the Mumford-Shah functional in a conctact manifold on the Heisenberg space, Preprint 2003. Zbl1198.49043
- [19] L. J. Corvin and F. P. Greenleaf, “Representations of nilpotent Lie groups and their applications”, Cambridge University Press, 1984. Zbl0704.22007
- [20] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980), 419–435. Zbl0465.53032MR608287
- [21] C. B. Croke and A. Derdziński, A lower bound for on manifolds with boundary, Comment. Math. Helv. 62 (1987), 106–121. Zbl0617.53047MR882967
- [22] T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétésf, Rev. Math. Iberoamericana 9 (1993), 293–314. Zbl0782.53066MR1232845
- [23] D. Danielli, N. Garofalo and D. M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263–341. Zbl1077.22007MR2014879
- [24] G. David and S. Semmes, “Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure”, Oxford University Press, 1997. Zbl0887.54001MR1616732
- [25] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge University Press, 1989. Zbl0699.35006MR990239
- [26] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33–44. Zbl0116.07901MR98331
- [27] E. De Giorgi, Un progetto di teoria delle correnti, forme differenziali e varietà non orientate in spazi metrici, In: “Variational Methods, Non Linear Analysys and Differential Equations in Honour of J. P. Cecconi”, M. Chicco et al. (eds.), ECIG, Genova, 1993, 67–71.
- [28] E. De Giorgi, Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, Manuscript (1995).
- [29] E. De Giorgi, Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285–292. Zbl0862.49028MR1366062
- [30] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of functions”, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [31] H. Federer, “Geometric Measure Theory”, Springer Verlag, 1969. Zbl0176.00801MR257325
- [32] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207. Zbl0312.35026MR494315
- [33] G. B. Folland and E. M. Stein, “Hardy spaces on homogeneous groups”, Princeton University Press, 1982. Zbl0508.42025MR657581
- [34] B. Franchi, S. Gallot and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571. Zbl0830.46027MR1314734
- [35] B. Franchi and E. Lanconelli, Hlder regularity theorem for a class of non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541. Zbl0552.35032MR753153
- [36] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier, Grenoble 45 (1995), 577–604. Zbl0820.46026MR1343563
- [37] B. Franchi, R. Serapioni and F. S. Cassano, Meyers-Serrin type theorems and relaxationof variational integrals depending on vector fields, Houston J. Math. 22 (1996), 859–890. Zbl0876.49014MR1437714
- [38] B. Franchi, R. Serapioni and F. S. Cassano, Approximation and imbedding theorems for wheighted Sobolev spaces associated with Lipschitz continous vector fields, Boll. Unione Mat. Ital. 11-B 7 (1997). Zbl0952.49010MR1448000
- [39] B. Franchi, R. Serapioni and F. S. Cassano, Rectifiability and Perimeter in the Heisenberg Group, Math. Ann. 321 (2001), 479–531. Zbl1057.49032MR1871966
- [40] B. Franchi, R. Serapioni and F. S. Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003). Zbl1077.22008MR2032504
- [41] B. Franchi, R. Serapioni and F. S. Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003). Zbl1064.49033MR1984849
- [42] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. Zbl0880.35032MR1404326
- [43] M. Gobbino, Finite difference approximation of the Mumford Shah functional, Comm. Pure. Appl. Math. 51 (1998). Zbl0888.49013MR1488299
- [44] N. Goodman, “Nilpotent Lie groups”, Springer Lecture notes in Mathematics, Vol. 562, 1976. Zbl0347.22001
- [45] M. Gromov, Carnot-Carathéodory spaces seen from within, In: “Subriemannian Geometry”, Progress in Mathematics, 144, A. Bellaiche and J. Rislered (eds.), Birkhauser Verlag, Basel, 1996. Zbl0864.53025
- [46] M. Gromov, “Metric Structures for Riemannian and Non Riemannian Spaces”, Progress in Mathematics 153, Birkhauser Verlag, Boston, 1999. Zbl0953.53002MR1699320
- [47] C. E. Gutierrez and A. Montanari, On the second order derivatives of convex functions on the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 349–366. Zbl1170.35352MR2075987
- [48] P. Hajłasz and P. Koskela, “Sobolev Met Poincaré”, Mem. Amer. Math. Soc. 688, Providence, RI, 2000. Zbl0954.46022MR1683160
- [49] J. Heinonen, Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskyla, 1994), Report, 68, Univ. Jyväskyla, Jyväskyla, 1995, 1–31. Zbl0863.22009MR1351042
- [50] S. Helgason, “Differential Geometry, Lie Groups, and Symmetric Spaces”, Academic Press, New York, 1978. Zbl0451.53038MR514561
- [51] D. Jerison, The Poincaré inequality for vector fields satisfying Hrmander condition, Duke Math. J. 53 (1986), 503–523. Zbl0614.35066MR850547
- [52] A. Korányi and H. M. Reimann, Foundation for the theory of quasiconformal mapping on the Heisenberg group, Adv. Math. 111 (1995), 1–85. Zbl0876.30019
- [53] S. Lang, “Differential and Riemannian Manifolds”, Springer Verlag, 1994. Zbl0824.58003MR1335233
- [54] J. M. Lee, “Introduction to Smooth Manifolds”, Springer Verlag, 2003. Zbl1030.53001MR1930091
- [55] G. Lu, J. J. Manfredi and B. Stroffolini, Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1–22. Zbl1072.49019MR2027845
- [56] V. Magnani, Differentiability and Area Formula on Statified Lie Groups, Houston J. Math. 27 (2001), 297–323. Zbl0983.22009MR1874099
- [57] V. Magnani, Characteristic point, rectifiability and perimeter measure on stratified groups, Preprint 2003. Zbl1107.22004MR2262196
- [58] G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory spaces, Geom. Functional Anal. 5 (1995), 402–433. Zbl0910.30020MR1334873
- [59] P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [60] J. Mitchell, On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35–45. Zbl0554.53023MR806700
- [61] R. Montgomery, “A Tour of Subriemannian Geometries, Their Geodesics and Applications”, American Mathematical Society, Math. Surveys and Monographs, vol. 91, 2002. Zbl1044.53022MR1867362
- [62] R. Monti, “Distances, Boundaries and surface measures in Carnot Carathéodory Spaces”, UTMPhDTS, 31, Ph. D. Thesis Series, Dip. Mat. Univ. Trento, Nov. 2001.
- [63] R. Monti and F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339–376. Zbl1032.49045MR1865002
- [64] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103–147. Zbl0578.32044MR793239
- [65] P. Pansu, “Geometrie du Group d’Heisenberg”, These pour le titre de Docteur, 3ème cycle, Universite Paris VII, 1982.
- [66] P. Pansu, Métriques de Carnot Carathéodory et quasi-isométries des espaces symmétriques de rang un, Ann. of Math. 2 129 (1989), 1–60. Zbl0678.53042MR979599
- [67] D. Preiss and J. Tisêr, On Besicovitch -problem, J. London Math. Soc. 45 (1992), 279–287. Zbl0762.28003
- [68] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. Zbl0346.35030MR436223
- [69] L. A. Santaló, “Integral Geometry and Geometric Probability”, Addison-Wesley, Reading, Mass., 1976. Zbl0342.53049MR433364
- [70] E. M. Stein, “Harmonic Analysis”, Princeton University Press, 1993. Zbl0821.42001MR1232192
- [71] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), 221–263. Corrections: J. Differential Geom. 30 (1989), 595–596. Zbl0609.53021MR862049
- [72] G. Talenti, The standard isoperimetric theorem, In: “Handbook of Convexity”, Vol. A, P. M. Gruber and J. M. Wills (eds.), 73–123, Amsterdam, North Holland, 1993. Zbl0799.51015MR1242977
- [73] V. S. Varadarajan, “Lie Groups, Lie Algebras, and their Representations”, Springer, 1984. Zbl0955.22500MR746308
- [74] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346–410. Zbl0634.22008MR924464
- [75] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, “Analysis and Geometry on Groups”, Cambridge University Press, 1992. Zbl1179.22009MR1218884
- [76] S. K. Vodop’yanov, -differentiability on Carnot Groups in different topologies and related topics, Proc. on Analysis and Geometry, pp. 603–670, Sobolev Inst. Press, Novosibirsk, 2000. Zbl0992.58005MR1847541
- [77] W. P. Ziemer, “Weakly Differentiable Functions”, Springer Verlag, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.