Some relations among volume, intrinsic perimeter and one-dimensional restrictions of B V functions in Carnot groups

Francescopaolo Montefalcone[1]

  • [1] Dipartimento di Matematica Università degli Studi di Bologna Piazza di P. ta S. Donato, 5 40126 Bologna, Italia

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 1, page 79-128
  • ISSN: 0391-173X

Abstract

top
Let 𝔾 be a k -step Carnot group. The first aim of this paper is to show an interplay between volume and 𝔾 -perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for 𝔾 -regular submanifolds of codimension one. We then give some applications of this result: slicing of B V 𝔾 functions, integral geometric formulae for volume and 𝔾 -perimeter and, making use of a suitable notion of convexity, called 𝔾 -convexity, we state a Cauchy type formula for 𝔾 -convex sets. Finally, in the last section we prove a sub-riemannian Santaló formula showing some related applications. In particular we find two lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-laplacian Δ 𝔾 on smooth domains.

How to cite

top

Montefalcone, Francescopaolo. "Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 79-128. <http://eudml.org/doc/84557>.

@article{Montefalcone2005,
abstract = {Let $\mathbb \{G\}$ be a $k$-step Carnot group. The first aim of this paper is to show an interplay between volume and $\mathbb \{G\}$-perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for $\mathbb \{G\}$-regular submanifolds of codimension one. We then give some applications of this result: slicing of $BV_\{\mathbb \{G\}\}$ functions, integral geometric formulae for volume and $\mathbb \{G\}$-perimeter and, making use of a suitable notion of convexity, called$\mathbb \{G\}$-convexity, we state a Cauchy type formula for $\mathbb \{G\}$-convex sets. Finally, in the last section we prove a sub-riemannian Santaló formula showing some related applications. In particular we find two lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-laplacian $\Delta _\{\mathbb \{G\}\}$ on smooth domains.},
affiliation = {Dipartimento di Matematica Università degli Studi di Bologna Piazza di P. ta S. Donato, 5 40126 Bologna, Italia},
author = {Montefalcone, Francescopaolo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {measures on Carnot groups; -convexity; Fubini-like theorems},
language = {eng},
number = {1},
pages = {79-128},
publisher = {Scuola Normale Superiore, Pisa},
title = {Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups},
url = {http://eudml.org/doc/84557},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Montefalcone, Francescopaolo
TI - Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 1
SP - 79
EP - 128
AB - Let $\mathbb {G}$ be a $k$-step Carnot group. The first aim of this paper is to show an interplay between volume and $\mathbb {G}$-perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for $\mathbb {G}$-regular submanifolds of codimension one. We then give some applications of this result: slicing of $BV_{\mathbb {G}}$ functions, integral geometric formulae for volume and $\mathbb {G}$-perimeter and, making use of a suitable notion of convexity, called$\mathbb {G}$-convexity, we state a Cauchy type formula for $\mathbb {G}$-convex sets. Finally, in the last section we prove a sub-riemannian Santaló formula showing some related applications. In particular we find two lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-laplacian $\Delta _{\mathbb {G}}$ on smooth domains.
LA - eng
KW - measures on Carnot groups; -convexity; Fubini-like theorems
UR - http://eudml.org/doc/84557
ER -

References

top
  1. [1] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), 51–67. Zbl1002.28004MR1823840
  2. [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. Zbl0957.49001MR1857292
  3. [3] L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527–555. Zbl0966.28002MR1800768
  4. [4] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. Zbl0984.49025MR1794185
  5. [5] L. Ambrosio and V. Magnani, Some fine properties of BV functions on sub-Riemannian groups, Math. Z. 245 (2003). Zbl1048.49030MR2023957
  6. [6] L. Ambrosio and P. Tilli, “Selected topics on Analysis in Metric Spaces”, Quaderni della Scuola Normale Superiore, Pisa, 2000. Zbl1084.28500MR2012736
  7. [7] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients, J. Reine Angew. Math. 564 (2003), 63–83. Zbl1051.53024MR2021034
  8. [8] Z. M. Balogh and M. Rickly, Regularity of convex functions on Heisenberg groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 847–868. Zbl1121.43007MR2040646
  9. [9] Z. M. Balogh, J. J. Manfredi and J. Tyson, Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups, J. Funct. Anal. 204 (2003), 35–49. Zbl1080.22003MR2004744
  10. [10] A. Bellaïche, The tangent space in subriemannian geometry, In: “Subriemannian Geometry”, A. Bellaiche and J. Risler (eds.), Progress in Mathematics 144, Birkhauser Verlag, Basel, 1996. Zbl0862.53031MR1421822
  11. [11] A. L. Besse, “Manifolds all of whose Geodesics are Closed”, Springer Verlag, Berlin, 1978. Zbl0387.53010MR496885
  12. [12] I. Birindelli and J. Prajapat, Monotonicity and simmetry results for degenerate elliptic equations on nilpotent Lie groups, Pacific J. Math. 204 (2002), 1–17. Zbl1158.35305MR1905188
  13. [13] Yu. D. Burago and V. A. Zalgaller, “Geometric Inequalities”, Springer Verlag, Berlin, 1980. Zbl0633.53002MR936419
  14. [14] L. Capogna, D. Danielli and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203–215. Zbl0864.46018MR1312686
  15. [15] I. Chavel, “Riemannian Geometry: a modern introduction”, Cambridge University Press, 1994. Zbl0819.53001MR2229062
  16. [16] I. Chavel, “Isoperimetric Inequalities”, Cambridge University Press, 2001. Zbl0988.51019MR1849187
  17. [17] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. Zbl0942.58018MR1708448
  18. [18] G. Citti, M. Manfredini and A. Sarti, Minimum of the Mumford-Shah functional in a conctact manifold on the Heisenberg space, Preprint 2003. Zbl1198.49043
  19. [19] L. J. Corvin and F. P. Greenleaf, “Representations of nilpotent Lie groups and their applications”, Cambridge University Press, 1984. Zbl0704.22007
  20. [20] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980), 419–435. Zbl0465.53032MR608287
  21. [21] C. B. Croke and A. Derdziński, A lower bound for λ 1 on manifolds with boundary, Comment. Math. Helv. 62 (1987), 106–121. Zbl0617.53047MR882967
  22. [22] T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétésf, Rev. Math. Iberoamericana 9 (1993), 293–314. Zbl0782.53066MR1232845
  23. [23] D. Danielli, N. Garofalo and D. M. Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), 263–341. Zbl1077.22007MR2014879
  24. [24] G. David and S. Semmes, “Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure”, Oxford University Press, 1997. Zbl0887.54001MR1616732
  25. [25] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge University Press, 1989. Zbl0699.35006MR990239
  26. [26] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33–44. Zbl0116.07901MR98331
  27. [27] E. De Giorgi, Un progetto di teoria delle correnti, forme differenziali e varietà non orientate in spazi metrici, In: “Variational Methods, Non Linear Analysys and Differential Equations in Honour of J. P. Cecconi”, M. Chicco et al. (eds.), ECIG, Genova, 1993, 67–71. 
  28. [28] E. De Giorgi, Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, Manuscript (1995). 
  29. [29] E. De Giorgi, Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285–292. Zbl0862.49028MR1366062
  30. [30] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of functions”, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  31. [31] H. Federer, “Geometric Measure Theory”, Springer Verlag, 1969. Zbl0176.00801MR257325
  32. [32] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207. Zbl0312.35026MR494315
  33. [33] G. B. Folland and E. M. Stein, “Hardy spaces on homogeneous groups”, Princeton University Press, 1982. Zbl0508.42025MR657581
  34. [34] B. Franchi, S. Gallot and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571. Zbl0830.46027MR1314734
  35. [35] B. Franchi and E. Lanconelli, H o ¨ lder regularity theorem for a class of non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541. Zbl0552.35032MR753153
  36. [36] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier, Grenoble 45 (1995), 577–604. Zbl0820.46026MR1343563
  37. [37] B. Franchi, R. Serapioni and F. S. Cassano, Meyers-Serrin type theorems and relaxationof variational integrals depending on vector fields, Houston J. Math. 22 (1996), 859–890. Zbl0876.49014MR1437714
  38. [38] B. Franchi, R. Serapioni and F. S. Cassano, Approximation and imbedding theorems for wheighted Sobolev spaces associated with Lipschitz continous vector fields, Boll. Unione Mat. Ital. 11-B 7 (1997). Zbl0952.49010MR1448000
  39. [39] B. Franchi, R. Serapioni and F. S. Cassano, Rectifiability and Perimeter in the Heisenberg Group, Math. Ann. 321 (2001), 479–531. Zbl1057.49032MR1871966
  40. [40] B. Franchi, R. Serapioni and F. S. Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003). Zbl1077.22008MR2032504
  41. [41] B. Franchi, R. Serapioni and F. S. Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003). Zbl1064.49033MR1984849
  42. [42] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. Zbl0880.35032MR1404326
  43. [43] M. Gobbino, Finite difference approximation of the Mumford Shah functional, Comm. Pure. Appl. Math. 51 (1998). Zbl0888.49013MR1488299
  44. [44] N. Goodman, “Nilpotent Lie groups”, Springer Lecture notes in Mathematics, Vol. 562, 1976. Zbl0347.22001
  45. [45] M. Gromov, Carnot-Carathéodory spaces seen from within, In: “Subriemannian Geometry”, Progress in Mathematics, 144, A. Bellaiche and J. Rislered (eds.), Birkhauser Verlag, Basel, 1996. Zbl0864.53025
  46. [46] M. Gromov, “Metric Structures for Riemannian and Non Riemannian Spaces”, Progress in Mathematics 153, Birkhauser Verlag, Boston, 1999. Zbl0953.53002MR1699320
  47. [47] C. E. Gutierrez and A. Montanari, On the second order derivatives of convex functions on the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 349–366. Zbl1170.35352MR2075987
  48. [48] P. Hajłasz and P. Koskela, “Sobolev Met Poincaré”, Mem. Amer. Math. Soc. 688, Providence, RI, 2000. Zbl0954.46022MR1683160
  49. [49] J. Heinonen, Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskyla, 1994), Report, 68, Univ. Jyväskyla, Jyväskyla, 1995, 1–31. Zbl0863.22009MR1351042
  50. [50] S. Helgason, “Differential Geometry, Lie Groups, and Symmetric Spaces”, Academic Press, New York, 1978. Zbl0451.53038MR514561
  51. [51] D. Jerison, The Poincaré inequality for vector fields satisfying H o ¨ rmander condition, Duke Math. J. 53 (1986), 503–523. Zbl0614.35066MR850547
  52. [52] A. Korányi and H. M. Reimann, Foundation for the theory of quasiconformal mapping on the Heisenberg group, Adv. Math. 111 (1995), 1–85. Zbl0876.30019
  53. [53] S. Lang, “Differential and Riemannian Manifolds”, Springer Verlag, 1994. Zbl0824.58003MR1335233
  54. [54] J. M. Lee, “Introduction to Smooth Manifolds”, Springer Verlag, 2003. Zbl1030.53001MR1930091
  55. [55] G. Lu, J. J. Manfredi and B. Stroffolini, Convex functions on the Heisenberg group, Calc. Var. Partial Differential Equations 19 (2004), 1–22. Zbl1072.49019MR2027845
  56. [56] V. Magnani, Differentiability and Area Formula on Statified Lie Groups, Houston J. Math. 27 (2001), 297–323. Zbl0983.22009MR1874099
  57. [57] V. Magnani, Characteristic point, rectifiability and perimeter measure on stratified groups, Preprint 2003. Zbl1107.22004MR2262196
  58. [58] G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory spaces, Geom. Functional Anal. 5 (1995), 402–433. Zbl0910.30020MR1334873
  59. [59] P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University Press, 1995. Zbl0819.28004MR1333890
  60. [60] J. Mitchell, On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35–45. Zbl0554.53023MR806700
  61. [61] R. Montgomery, “A Tour of Subriemannian Geometries, Their Geodesics and Applications”, American Mathematical Society, Math. Surveys and Monographs, vol. 91, 2002. Zbl1044.53022MR1867362
  62. [62] R. Monti, “Distances, Boundaries and surface measures in Carnot Carathéodory Spaces”, UTMPhDTS, 31, Ph. D. Thesis Series, Dip. Mat. Univ. Trento, Nov. 2001. 
  63. [63] R. Monti and F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339–376. Zbl1032.49045MR1865002
  64. [64] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103–147. Zbl0578.32044MR793239
  65. [65] P. Pansu, “Geometrie du Group d’Heisenberg”, These pour le titre de Docteur, 3ème cycle, Universite Paris VII, 1982. 
  66. [66] P. Pansu, Métriques de Carnot Carathéodory et quasi-isométries des espaces symmétriques de rang un, Ann. of Math. 2 129 (1989), 1–60. Zbl0678.53042MR979599
  67. [67] D. Preiss and J. Tisêr, On Besicovitch 1 / 2 -problem, J. London Math. Soc. 45 (1992), 279–287. Zbl0762.28003
  68. [68] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. Zbl0346.35030MR436223
  69. [69] L. A. Santaló, “Integral Geometry and Geometric Probability”, Addison-Wesley, Reading, Mass., 1976. Zbl0342.53049MR433364
  70. [70] E. M. Stein, “Harmonic Analysis”, Princeton University Press, 1993. Zbl0821.42001MR1232192
  71. [71] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), 221–263. Corrections: J. Differential Geom. 30 (1989), 595–596. Zbl0609.53021MR862049
  72. [72] G. Talenti, The standard isoperimetric theorem, In: “Handbook of Convexity”, Vol. A, P. M. Gruber and J. M. Wills (eds.), 73–123, Amsterdam, North Holland, 1993. Zbl0799.51015MR1242977
  73. [73] V. S. Varadarajan, “Lie Groups, Lie Algebras, and their Representations”, Springer, 1984. Zbl0955.22500MR746308
  74. [74] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346–410. Zbl0634.22008MR924464
  75. [75] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, “Analysis and Geometry on Groups”, Cambridge University Press, 1992. Zbl1179.22009MR1218884
  76. [76] S. K. Vodop’yanov, 𝒫 -differentiability on Carnot Groups in different topologies and related topics, Proc. on Analysis and Geometry, pp. 603–670, Sobolev Inst. Press, Novosibirsk, 2000. Zbl0992.58005MR1847541
  77. [77] W. P. Ziemer, “Weakly Differentiable Functions”, Springer Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.