Sharp estimates for the Ornstein-Uhlenbeck operator

Giancarlo Mauceri[1]; Stefano Meda[2]; Peter Sjögren[3]

  • [1] Dipartimento di Matematica       Università di Genova via Dodecaneso 35 16146 Genova, Italy
  • [2] Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via Bicocca degli Arcimboldi 8 20126 Milano, Italy
  • [3] Department of Mathematics Göteborg University SE-412 96 Göteborg, Sweden

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 447-480
  • ISSN: 0391-173X

Abstract

top
Let be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure γ on d . We prove a sharp estimate of the operator norm of the imaginary powers of on L p ( γ ) , 1 < p < . Then we use this estimate to prove that if b is in [ 0 , ) and M is a bounded holomorphic function in the sector { z : m o d arg ( z - b ) < arcsin | 2 / p - 1 | } and satisfies a Hörmander-like condition of (nonintegral) order greater than one on the boundary, then the operator M ( ) is bounded on L p ( γ ) . This improves earlier results of the authors with J. García-Cuerva and J.L. Torrea.

How to cite

top

Mauceri, Giancarlo, Meda, Stefano, and Sjögren, Peter. "Sharp estimates for the Ornstein-Uhlenbeck operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 447-480. <http://eudml.org/doc/84537>.

@article{Mauceri2004,
abstract = {Let $ \{\mathcal \{L\}\}$ be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure $\gamma $ on $\mathbb \{R\}^d.$ We prove a sharp estimate of the operator norm of the imaginary powers of $ \{\mathcal \{L\}\}$ on $L^p(\gamma ),$$1&lt;p&lt;\infty .$ Then we use this estimate to prove that if $b$ is in $[0,\infty )$ and $M$ is a bounded holomorphic function in the sector $\lbrace z\in \mathbb \{C\}: ~mod \;\arg (z-b) &lt; \arcsin |2/p-1|\rbrace $ and satisfies a Hörmander-like condition of (nonintegral) order greater than one on the boundary, then the operator $M( \{\mathcal \{L\}\})$ is bounded on $L^p(\gamma ).$ This improves earlier results of the authors with J. García-Cuerva and J.L. Torrea.},
affiliation = {Dipartimento di Matematica       Università di Genova via Dodecaneso 35 16146 Genova, Italy; Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via Bicocca degli Arcimboldi 8 20126 Milano, Italy; Department of Mathematics Göteborg University SE-412 96 Göteborg, Sweden},
author = {Mauceri, Giancarlo, Meda, Stefano, Sjögren, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {447-480},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sharp estimates for the Ornstein-Uhlenbeck operator},
url = {http://eudml.org/doc/84537},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Mauceri, Giancarlo
AU - Meda, Stefano
AU - Sjögren, Peter
TI - Sharp estimates for the Ornstein-Uhlenbeck operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 447
EP - 480
AB - Let $ {\mathcal {L}}$ be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure $\gamma $ on $\mathbb {R}^d.$ We prove a sharp estimate of the operator norm of the imaginary powers of $ {\mathcal {L}}$ on $L^p(\gamma ),$$1&lt;p&lt;\infty .$ Then we use this estimate to prove that if $b$ is in $[0,\infty )$ and $M$ is a bounded holomorphic function in the sector $\lbrace z\in \mathbb {C}: ~mod \;\arg (z-b) &lt; \arcsin |2/p-1|\rbrace $ and satisfies a Hörmander-like condition of (nonintegral) order greater than one on the boundary, then the operator $M( {\mathcal {L}})$ is bounded on $L^p(\gamma ).$ This improves earlier results of the authors with J. García-Cuerva and J.L. Torrea.
LA - eng
UR - http://eudml.org/doc/84537
ER -

References

top
  1. [1] M. Cowling, Harmonic analysis on semigroups, Ann. of Math. 117 (1983), 267-283. Zbl0528.42006MR690846
  2. [2] M. Cowling – I. Doust – A. McIntosh – A. Yagi, Banach space operators with a bounded H functional calculus, J. Aust. Math. Soc. 60 (1996), 51-89. Zbl0853.47010MR1364554
  3. [3] M. Cowling – S. Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. 340 (1993), 733-752. Zbl0798.47032MR1127154
  4. [4] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Tract. in Math. 92, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
  5. [5] J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), 1-30. Zbl0696.47028MR1025881
  6. [6] J. Garcia-Cuerva – G. Mauceri – P. Sjögren – J.L. Torrea, Spectral multipliers for the Ornstein–Uhlenbeck semigroup, J. Anal. Math. 78 (1999), 281-305. Zbl0939.42007MR1714425
  7. [7] J. García-Cuerva – G. Mauceri – S. Meda – P. Sjögren – J. L. Torrea, Functional Calculus for the Ornstein-Uhlenbeck Operator, J. Funct. Anal. 183 (2001), 413-450. Zbl0995.47010MR1844213
  8. [8] W. Hebisch – G. Mauceri – S. Meda, Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, J. Funct. Anal. 210 (2004), 101-124. Zbl1069.47017MR2052115
  9. [9] L. Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402MR121655
  10. [10] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 1 Springer Verlag, Berlin, 1983. Zbl0521.35002
  11. [11] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc. 110 (1990), 639-647. Zbl0760.42007MR1028046
  12. [12] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-227. Zbl0273.60079MR343816
  13. [13] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Annals of Math. Studies, No. 63, Princeton N. J., 1970. Zbl0193.10502MR252961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.