Sharp estimates for the Ornstein-Uhlenbeck operator
Giancarlo Mauceri[1]; Stefano Meda[2]; Peter Sjögren[3]
- [1] Dipartimento di Matematica Università di Genova via Dodecaneso 35 16146 Genova, Italy
- [2] Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via Bicocca degli Arcimboldi 8 20126 Milano, Italy
- [3] Department of Mathematics Göteborg University SE-412 96 Göteborg, Sweden
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 3, page 447-480
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Cowling, Harmonic analysis on semigroups, Ann. of Math. 117 (1983), 267-283. Zbl0528.42006MR690846
- [2] M. Cowling – I. Doust – A. McIntosh – A. Yagi, Banach space operators with a bounded functional calculus, J. Aust. Math. Soc. 60 (1996), 51-89. Zbl0853.47010MR1364554
- [3] M. Cowling – S. Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. 340 (1993), 733-752. Zbl0798.47032MR1127154
- [4] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Tract. in Math. 92, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
- [5] J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), 1-30. Zbl0696.47028MR1025881
- [6] J. Garcia-Cuerva – G. Mauceri – P. Sjögren – J.L. Torrea, Spectral multipliers for the Ornstein–Uhlenbeck semigroup, J. Anal. Math. 78 (1999), 281-305. Zbl0939.42007MR1714425
- [7] J. García-Cuerva – G. Mauceri – S. Meda – P. Sjögren – J. L. Torrea, Functional Calculus for the Ornstein-Uhlenbeck Operator, J. Funct. Anal. 183 (2001), 413-450. Zbl0995.47010MR1844213
- [8] W. Hebisch – G. Mauceri – S. Meda, Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, J. Funct. Anal. 210 (2004), 101-124. Zbl1069.47017MR2052115
- [9] L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402MR121655
- [10] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 1 Springer Verlag, Berlin, 1983. Zbl0521.35002
- [11] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc. 110 (1990), 639-647. Zbl0760.42007MR1028046
- [12] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-227. Zbl0273.60079MR343816
- [13] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Annals of Math. Studies, No. 63, Princeton N. J., 1970. Zbl0193.10502MR252961