Sharp estimates for the Ornstein-Uhlenbeck operator
Giancarlo Mauceri[1]; Stefano Meda[2]; Peter Sjögren[3]
- [1] Dipartimento di Matematica Università di Genova via Dodecaneso 35 16146 Genova, Italy
- [2] Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via Bicocca degli Arcimboldi 8 20126 Milano, Italy
- [3] Department of Mathematics Göteborg University SE-412 96 Göteborg, Sweden
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 3, page 447-480
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMauceri, Giancarlo, Meda, Stefano, and Sjögren, Peter. "Sharp estimates for the Ornstein-Uhlenbeck operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 447-480. <http://eudml.org/doc/84537>.
@article{Mauceri2004,
abstract = {Let $ \{\mathcal \{L\}\}$ be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure $\gamma $ on $\mathbb \{R\}^d.$ We prove a sharp estimate of the operator norm of the imaginary powers of $ \{\mathcal \{L\}\}$ on $L^p(\gamma ),$$1<p<\infty .$ Then we use this estimate to prove that if $b$ is in $[0,\infty )$ and $M$ is a bounded holomorphic function in the sector $\lbrace z\in \mathbb \{C\}: ~mod \;\arg (z-b) < \arcsin |2/p-1|\rbrace $ and satisfies a Hörmander-like condition of (nonintegral) order greater than one on the boundary, then the operator $M( \{\mathcal \{L\}\})$ is bounded on $L^p(\gamma ).$ This improves earlier results of the authors with J. García-Cuerva and J.L. Torrea.},
affiliation = {Dipartimento di Matematica Università di Genova via Dodecaneso 35 16146 Genova, Italy; Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca via Bicocca degli Arcimboldi 8 20126 Milano, Italy; Department of Mathematics Göteborg University SE-412 96 Göteborg, Sweden},
author = {Mauceri, Giancarlo, Meda, Stefano, Sjögren, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {447-480},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sharp estimates for the Ornstein-Uhlenbeck operator},
url = {http://eudml.org/doc/84537},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Mauceri, Giancarlo
AU - Meda, Stefano
AU - Sjögren, Peter
TI - Sharp estimates for the Ornstein-Uhlenbeck operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 447
EP - 480
AB - Let $ {\mathcal {L}}$ be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure $\gamma $ on $\mathbb {R}^d.$ We prove a sharp estimate of the operator norm of the imaginary powers of $ {\mathcal {L}}$ on $L^p(\gamma ),$$1<p<\infty .$ Then we use this estimate to prove that if $b$ is in $[0,\infty )$ and $M$ is a bounded holomorphic function in the sector $\lbrace z\in \mathbb {C}: ~mod \;\arg (z-b) < \arcsin |2/p-1|\rbrace $ and satisfies a Hörmander-like condition of (nonintegral) order greater than one on the boundary, then the operator $M( {\mathcal {L}})$ is bounded on $L^p(\gamma ).$ This improves earlier results of the authors with J. García-Cuerva and J.L. Torrea.
LA - eng
UR - http://eudml.org/doc/84537
ER -
References
top- [1] M. Cowling, Harmonic analysis on semigroups, Ann. of Math. 117 (1983), 267-283. Zbl0528.42006MR690846
- [2] M. Cowling – I. Doust – A. McIntosh – A. Yagi, Banach space operators with a bounded functional calculus, J. Aust. Math. Soc. 60 (1996), 51-89. Zbl0853.47010MR1364554
- [3] M. Cowling – S. Meda, Harmonic analysis and ultracontractivity, Trans. Amer. Math. Soc. 340 (1993), 733-752. Zbl0798.47032MR1127154
- [4] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Tract. in Math. 92, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
- [5] J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), 1-30. Zbl0696.47028MR1025881
- [6] J. Garcia-Cuerva – G. Mauceri – P. Sjögren – J.L. Torrea, Spectral multipliers for the Ornstein–Uhlenbeck semigroup, J. Anal. Math. 78 (1999), 281-305. Zbl0939.42007MR1714425
- [7] J. García-Cuerva – G. Mauceri – S. Meda – P. Sjögren – J. L. Torrea, Functional Calculus for the Ornstein-Uhlenbeck Operator, J. Funct. Anal. 183 (2001), 413-450. Zbl0995.47010MR1844213
- [8] W. Hebisch – G. Mauceri – S. Meda, Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, J. Funct. Anal. 210 (2004), 101-124. Zbl1069.47017MR2052115
- [9] L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402MR121655
- [10] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 1 Springer Verlag, Berlin, 1983. Zbl0521.35002
- [11] S. Meda, A general multiplier theorem, Proc. Amer. Math. Soc. 110 (1990), 639-647. Zbl0760.42007MR1028046
- [12] E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-227. Zbl0273.60079MR343816
- [13] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Annals of Math. Studies, No. 63, Princeton N. J., 1970. Zbl0193.10502MR252961
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.