The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sharp estimates for the Ornstein-Uhlenbeck operator”

L p - L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III

Michael Cowling, Saverio Giulini, Stefano Meda (2001)

Annales de l’institut Fourier

Similarity:

Let X be a symmetric space of the noncompact type, with Laplace–Beltrami operator - , and let [ b , ) be the L 2 ( X ) -spectrum of . For τ in such that Re τ 0 , let 𝒫 τ be the operator on L 2 ( X ) defined formally as exp ( - τ ( - b ) 1 / 2 ) . In this paper, we obtain L p - L q operator norm estimates for 𝒫 τ for all τ , and show that these are optimal when τ is small and when | arg τ | is bounded below π / 2 .

Unique continuation for the solutions of the laplacian plus a drift

Alberto Ruiz, Luis Vega (1991)

Annales de l'institut Fourier

Similarity:

We prove unique continuation for solutions of the inequality | Δ u ( x ) | V ( x ) | u ( x ) | , x Ω a connected set contained in R n and V is in the Morrey spaces F α , p , with p ( n - 2 ) / 2 ( 1 - α ) and α < 1 . These spaces include L q for q ( 3 n - 2 ) / 2 (see [H], [BKRS]). If p = ( n - 2 ) / 2 ( 1 - α ) , the extra assumption of V being small enough is needed.

Initial value problem for the time dependent Schrödinger equation on the Heisenberg group

Jacek Zienkiewicz (1997)

Studia Mathematica

Similarity:

Let L be the full laplacian on the Heisenberg group n of arbitrary dimension n. Then for f L 2 ( n ) such that ( I - L ) s / 2 f L 2 ( n ) , s > 3/4, for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t L f ( x ) | 2 d x C ϕ f W s 2 . On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group n , then for every s < 1 there exists a sequence f n L 2 ( n ) and C n > 0 such that ( I - L ) s / 2 f n L 2 ( n ) and for a ϕ C c ( n ) we have ʃ n | ϕ ( x ) | s u p 0 < t 1 | e ( - 1 ) t Δ f n ( x ) | 2 d x C n f n W s 2 , l i m n C n = + .

A Hörmander-type spectral multiplier theorem for operators without heat kernel

Sönke Blunck (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Hörmander’s famous Fourier multiplier theorem ensures the L p -boundedness of F ( - Δ D ) whenever F ( s ) for some s &gt; D 2 , where we denote by ( s ) the set of functions satisfying the Hörmander condition for s derivatives. Spectral multiplier theorems are extensions of this result to more general operators A 0 and yield the L p -boundedness of F ( A ) provided F ( s ) for some s sufficiently large. The harmonic oscillator A = - Δ + x 2 shows that in general s &gt; D 2 is not sufficient even if A has a heat kernel satisfying gaussian estimates. In...

Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates

Peng Chen (2013)

Colloquium Mathematicae

Similarity:

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let H L p ( X ) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on H L p ( X ) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on H L p ( X ) . ...

Spherical summation : a problem of E.M. Stein

Antonio Cordoba, B. Lopez-Melero (1981)

Annales de l'institut Fourier

Similarity:

Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ &gt; 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ &lt; p &lt; 4 1 - 2 λ .

Accurate Spectral Asymptotics for periodic operators

Victor Ivrii (1999)

Journées équations aux dérivées partielles

Similarity:

Asymptotics with sharp remainder estimates are recovered for number 𝐍 ( τ ) of eigenvalues of operator A ( x , D ) - t W ( x , x ) crossing level E as t runs from 0 to τ , τ . Here A is periodic matrix operator, matrix W is positive, periodic with respect to first copy of x and decaying as second copy of x goes to infinity, E either belongs to a spectral gap of A or is one its ends. These problems are first treated in papers of M. Sh. Birman, M. Sh. Birman-A. Laptev and M. Sh. Birman-T. Suslina.