On the CR-structure of certain linear group orbits in infinite dimensions

Wilhelm Kaup[1]

  • [1] Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 535-554
  • ISSN: 0391-173X

Abstract

top
For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits  M explicitly and show as main result that every continuous CR-function on  M has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.

How to cite

top

Kaup, Wilhelm. "On the CR-structure of certain linear group orbits in infinite dimensions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 535-554. <http://eudml.org/doc/84539>.

@article{Kaup2004,
abstract = {For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits $M$ explicitly and show as main result that every continuous CR-function on $M$ has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.},
affiliation = {Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen, Germany},
author = {Kaup, Wilhelm},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {535-554},
publisher = {Scuola Normale Superiore, Pisa},
title = {On the CR-structure of certain linear group orbits in infinite dimensions},
url = {http://eudml.org/doc/84539},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Kaup, Wilhelm
TI - On the CR-structure of certain linear group orbits in infinite dimensions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 535
EP - 554
AB - For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits $M$ explicitly and show as main result that every continuous CR-function on $M$ has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.
LA - eng
UR - http://eudml.org/doc/84539
ER -

References

top
  1. [1] M. S. Baouendi – P. Ebenfelt – L. P. Rothschild, “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series 47, Princeton Univ. Press, 1998. Zbl0944.32040MR1668103
  2. [2] M. S. Baouendi – F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421. Zbl0491.35036MR607899
  3. [3] A. Boggess, “CR Manifolds and the Tangential Cauchy-Riemann Complex”, Studies in Advanced Mathematics, CRC Press. Boca Raton, Ann Arbor, Boston, London 1991. Zbl0760.32001MR1211412
  4. [4] N. Boubaki, “Integration”, Hermann, Paris 1965. 
  5. [5] S. Dineen, “Complex Analysis on Infinite Dimensional Spaces”, Berlin-Heidelberg-New York, Springer, 1999. Zbl1034.46504MR1705327
  6. [6] J. Faraut – L. Bouattour, Enveloppes polynômiales d’ensembles compacts invariants, Math. Nachr. 266 (2004), 20-26. Zbl1053.32007MR2040332
  7. [7] T. Franzoni – E. Vesentini, “Holomorphic Maps and Invariant Distances”, North Holland, Amsterdam, 1980. Zbl0447.46040MR563329
  8. [8] L. A. Harris – W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666-674. Zbl0385.22011MR460551
  9. [9] W. Kaup, Algebraic Characterization of Symmetric Complex Banach Manifolds, Math. Ann. 228 (1977), 39-64. Zbl0335.58005MR454091
  10. [10] W. Kaup, A Riemann Mapping Theorem for Bounded Symmetric Domains in Complex Banach Spaces, Math. Z. 183 (1983), 503-529. Zbl0519.32024MR710768
  11. [11] W. Kaup, On spectral and singular values in JB * -triples, Proc. Roy. Irish. Acad. 96A (1996), 95-103. Zbl0904.46039MR1644656
  12. [12] W. Kaup, Bounded symmetric domains and polynomial convexity, Manuscripta Math. 114 (2004), 391-398. Zbl1056.32011MR2076455
  13. [13] W. Kaup – D. Zaitsev, On the CR-structure of compact group orbits associated with bounded symmetric domains, Invent. Math. 153 (2003), 45-104. Zbl1027.32032MR1990667
  14. [14] O. Loos, “Jordan pairs”, Springer Lecture Notes 460, 1975. Zbl0301.17003MR444721
  15. [15] C. Sacré, Enveloppes polynomiales de compacts, Bull. Sci. Math. 116 (1992), 129-144. Zbl0756.32009MR1154377
  16. [16] J. Sauter, “Randstrukturen beschränkter symmetrischer Gebiete”, Dissertation, Tübingen, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.