On the CR-structure of certain linear group orbits in infinite dimensions
Wilhelm Kaup[1]
- [1] Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 3, page 535-554
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKaup, Wilhelm. "On the CR-structure of certain linear group orbits in infinite dimensions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 535-554. <http://eudml.org/doc/84539>.
@article{Kaup2004,
abstract = {For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits $M$ explicitly and show as main result that every continuous CR-function on $M$ has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.},
affiliation = {Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen, Germany},
author = {Kaup, Wilhelm},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {535-554},
publisher = {Scuola Normale Superiore, Pisa},
title = {On the CR-structure of certain linear group orbits in infinite dimensions},
url = {http://eudml.org/doc/84539},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Kaup, Wilhelm
TI - On the CR-structure of certain linear group orbits in infinite dimensions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 535
EP - 554
AB - For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits $M$ explicitly and show as main result that every continuous CR-function on $M$ has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite dimensions results from a recent joint paper with D. Zaitsev in Inventiones math. 153, 45-104.
LA - eng
UR - http://eudml.org/doc/84539
ER -
References
top- [1] M. S. Baouendi – P. Ebenfelt – L. P. Rothschild, “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series 47, Princeton Univ. Press, 1998. Zbl0944.32040MR1668103
- [2] M. S. Baouendi – F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), 387-421. Zbl0491.35036MR607899
- [3] A. Boggess, “CR Manifolds and the Tangential Cauchy-Riemann Complex”, Studies in Advanced Mathematics, CRC Press. Boca Raton, Ann Arbor, Boston, London 1991. Zbl0760.32001MR1211412
- [4] N. Boubaki, “Integration”, Hermann, Paris 1965.
- [5] S. Dineen, “Complex Analysis on Infinite Dimensional Spaces”, Berlin-Heidelberg-New York, Springer, 1999. Zbl1034.46504MR1705327
- [6] J. Faraut – L. Bouattour, Enveloppes polynômiales d’ensembles compacts invariants, Math. Nachr. 266 (2004), 20-26. Zbl1053.32007MR2040332
- [7] T. Franzoni – E. Vesentini, “Holomorphic Maps and Invariant Distances”, North Holland, Amsterdam, 1980. Zbl0447.46040MR563329
- [8] L. A. Harris – W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), 666-674. Zbl0385.22011MR460551
- [9] W. Kaup, Algebraic Characterization of Symmetric Complex Banach Manifolds, Math. Ann. 228 (1977), 39-64. Zbl0335.58005MR454091
- [10] W. Kaup, A Riemann Mapping Theorem for Bounded Symmetric Domains in Complex Banach Spaces, Math. Z. 183 (1983), 503-529. Zbl0519.32024MR710768
- [11] W. Kaup, On spectral and singular values in JB-triples, Proc. Roy. Irish. Acad. 96A (1996), 95-103. Zbl0904.46039MR1644656
- [12] W. Kaup, Bounded symmetric domains and polynomial convexity, Manuscripta Math. 114 (2004), 391-398. Zbl1056.32011MR2076455
- [13] W. Kaup – D. Zaitsev, On the CR-structure of compact group orbits associated with bounded symmetric domains, Invent. Math. 153 (2003), 45-104. Zbl1027.32032MR1990667
- [14] O. Loos, “Jordan pairs”, Springer Lecture Notes 460, 1975. Zbl0301.17003MR444721
- [15] C. Sacré, Enveloppes polynomiales de compacts, Bull. Sci. Math. 116 (1992), 129-144. Zbl0756.32009MR1154377
- [16] J. Sauter, “Randstrukturen beschränkter symmetrischer Gebiete”, Dissertation, Tübingen, 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.