Non-Lipschitz coefficients for strictly hyperbolic equations
Fumihiko Hirosawa[1]; Michael Reissig[2]
- [1] Department of Mathematics Nippon Institute of Technology Saitama 345-8501, Japan
- [2] Fakultät für Mathematik und Informatik TU Bergakademie Freiberg 09596 Freiberg, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 3, page 589-608
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topHirosawa, Fumihiko, and Reissig, Michael. "Non-Lipschitz coefficients for strictly hyperbolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 589-608. <http://eudml.org/doc/84541>.
@article{Hirosawa2004,
abstract = {In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get $C^\infty $ well posedness for weakly hyperbolic Cauchy problems or for strictly hyperbolic Cauchy problems with non-Lipschitz coefficients are optimal.},
affiliation = {Department of Mathematics Nippon Institute of Technology Saitama 345-8501, Japan; Fakultät für Mathematik und Informatik TU Bergakademie Freiberg 09596 Freiberg, Germany},
author = {Hirosawa, Fumihiko, Reissig, Michael},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {589-608},
publisher = {Scuola Normale Superiore, Pisa},
title = {Non-Lipschitz coefficients for strictly hyperbolic equations},
url = {http://eudml.org/doc/84541},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Hirosawa, Fumihiko
AU - Reissig, Michael
TI - Non-Lipschitz coefficients for strictly hyperbolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 589
EP - 608
AB - In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get $C^\infty $ well posedness for weakly hyperbolic Cauchy problems or for strictly hyperbolic Cauchy problems with non-Lipschitz coefficients are optimal.
LA - eng
UR - http://eudml.org/doc/84541
ER -
References
top- [1] R. Agliardi – M. Cicognani, Operators of -evolution with non regular coefficients in the time variable, J. Differential Equations 202 (2004), 143-157. Zbl1065.35094MR2060535
- [2] M. Cicognani, Coefficients with unbounded derivatives in hyperbolic equations, to appear in Math. Nachr. Zbl1060.35071MR2100045
- [3] F. Colombini – E. De Giorgi – S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne dependent que du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 511-559. Zbl0417.35049MR553796
- [4] F. Colombini – D. Del Santo – T. Kinoshita, Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 327-358. Zbl1098.35094MR1991143
- [5] F. Colombini – D. Del Santo – M. Reissig, On the optimal regularity of coefficients in hyperbolic Cauchy problems, Bull. Sci. Math. 127 (2003), 328-347. Zbl1037.35038MR1988632
- [6] F. Colombini – N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. Zbl0840.35067MR1324638
- [7] F. Hirosawa, On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients, Math. Nachr. 256 (2003), 29-47. Zbl1026.35063MR1989376
- [8] F. Hirosawa – M. Reissig, Well-posedness in Sobolev spaces for second order strictly hyperbolic equations with non-differentiable oscillating coefficients, Ann. Global Anal. Geom. 25 (2004), 99-119. Zbl1047.35079MR2046768
- [9] S. Mizohata, “Theory of the partial differential equations”, Cambridge University Press, 1973. Zbl0263.35001MR599580
- [10] M. Reissig, Hyperbolic equations with non-Lipschitz coefficients, Rend. Sem. Mat. Univ. Politec. Torino 61 (2003), 135-182. Zbl1182.35155MR2056996
- [11] M. Reissig – K. Yagdjian, estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, Math. Nachr. 214 (2000), 71-104. Zbl1006.35057MR1762053
- [12] K. Yagdjian, “The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach”, Akademie-Verlag, Berlin, 1997. Zbl0887.35002MR1469977
- [13] T. Yamazaki, On the well-posedness of some singular or degenerate partial differential equations of hyperbolic type, Comm. Partial Differential Equations 15 (1990), 1029-1078. Zbl0714.35053MR1070237
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.